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APPLICATIONS OF THE CONJUGATE GRADIENT FFT METHOD IN

SCATTERING AND RADIATION INCLUDING SIMULATIONS

WITH IMPEDANCE BOUNDARY CONDITIONS

Abstract

The theoretical and computational aspects related to the application of the

Conjugate Gradient FFT (CGFFT) method in computational electromagnetics

are examined. The advantages of applying the CGFFT method to a class of large

scale scattering and radiation problems are outlined. The main advantages of
the method stem from its iterative nature which eliminates a need to form the

system matrix (thus reducing the computer memory allocation requirements) and

guarantees convergence to the true solution in a finite number of steps. Moreover,

since the CGFFT algorithm is highly vectorizable, it can be efficiently implemented

on supercomputers and multiprocessor machines.

Results are presented for various radiators and scatterers including thin cylin-

drical dipole antennas, thin conductive and resistive strips and plates, as well as

dielectric cylinders.

Solutions of integral equations derived on the basis of generalized impedance

boundary conditions (GIBC) are also examined. These boundary conditions can

be used to replace the profile of a material coating by an impedance sheet or insert,

thus, eliminating the need to introduce unknown polarization currents within tile

volume of the layer. Moreover, by applying these surface boundary conditions,
the difficulties associated with the calculation of the Green's function are avoided.

Impedance boundary conditions of up to the third order are employed and shown to

be compatible with the basic CGFFT formulation, allowing an efficient simulation

of large coated structures and filled cavity-backed apertures by further reducing

the memory demand. For the purpose of validation of these simulations, a general

full-wave analysis of two- and three-dimensional rectangular grooves and cavities

is presented which will also serve as reference for future work.
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CHAPTER I

INTRODUCTION

Despite its long life in classical electrodynamics, the study of "Radiation" and

"Scattering" has enjoyed renewed interest in recent years, particularly in connection

with improved antenna designs required by the technological progress in radio com-

munication, advances in radar signature analysis and control, and more recently, the

growing computing power offered by high speed computers. These have contributed

to the emergence of Computational Electromagnetics (CEM), the numerical study of

electromagnetic wave phenomena.

When the operating frequency is such that the object's linear dimensions are

comparable to the wavelength, the available high frequency methods are no longer

applicable and more accurate formulations must be adopted. Moreover, these asymp-

totic techniques axe predominantly suitable for conducting bodies of canonical ge-

ometries and shapes. Therefore, they cannot be employed for simulating material

bodies which constitute modern composite vehicles and structures. Furthermore,

because of an increase in the complexity of the formulations and corresponding lim-

itations on justifiable approximations, the need for consistent and stable numerical

schemes arises to ensure convergence of the solutions under consideration. These

restrictions, coupled with the limitations on available computer resources (memory



and speed), represent a challenge in the modeling of large scale problems. It is this

class of problems that this study attempts to address.

1.1 Motivation

In radiation and scattering, we are interested in defining the electromagnetic fields

in the presence of a source distribution. The key to the solution of any such problem

is a knowledge of the induced current density on the surface or in the volume of

the antenna or scatterer. Once this is found, the radiated or scattered fields can be

computed via the standard radiation integrals.

The induced volumetric current density J on the body of the scatterer or radiator

satisfies an integral equation which may be expressed in functional form as

_¢' = ¢4[J1 (1.1)

where _¢_ is a vector representing the impressed field and .A is an integrodifferential

operator (functional) relating the impressed fields to the induced current. Tradition-

ally, equation (1.1) is solved directly by discretizing the unknown current density

and forming a linear system of equations. Typically, such a discretization results

in a square matrix demanding a memory storage of order O(N2), where N is the

number of unknown coefficients in the current density expansion. The system of

equations is usually solved by standard matrix inversion methods such as Gaussian

ehmination or LU decomposition. However, the limitations on available comput-

ing resources (including memory and processing time) associated with the numerical

formulation of large systems, limit the range of apphcability of such direct methods

to relatively low frequencies. In addition, for large scale simulations, the memory

demand of these methods results in prohibitive storage requirements and, thus, tra-

ditional matrix inversion approaches are not attractive and alternative methods are



needed.

To address this ne,-_, iterative approaches have been used by researchers. In

iterative methods, an initial solution for the current distribution is assumed, and

this is improved through successive iterations. The process continues until a pre-

assigned accuracy (tolerance) is reached. The main advantage of iterative methods

is that the calculations can proceed without a need to generate the system matrix,

because iterative methods often require only the multiphcation of matrices with

vectors. This reduces the memory requirement to a lower order O(N) and therefore

renders iterative schemes suitable for large scale simulations. Furthermore, while

a matrix inversion approach may fail to yield an accurate solution due to a large

condition number of the matrix operators, an iterative method in such cases merely

requires more iterations before reaching convergence.

In this study, we will explore the application of an iterative scheme, namely the

Conjugate Gradient Method (CGM), in the solution of systems of equations arising

in scattering and radiation problems. From its introduction nearly forty years ago

[1, 2], the CGM has been of considerable interest to mathematicians and engineers,

primarily because, in theory, it ensures convergence for arbitrary initial estimates-a

feature not shared by many of the iterative algorithms used in the past.

The guaranteed convergence of the conjugate gradient method, as well as its effi-

cient storage requirements as an iterative scheme, are prerequisites for its application

to general configurations of interest. Another advantage of the CGM, however, stems

from an interesting property shared by the integroditferential operators encountered

in most radiation and scattering problems. For these problems, .A is a convolution

operator involving the induced current density and the pertinent Green's function.

Thus, by employing the convolution theorem, the evaluation of the functional reduces
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to simple algebraic operations on the Fourier transforms of the convolved quantities.

This simplification often results in a notable improvement in the speed of the calcula-

tions (N log N in contrast to/V2). In practice, the Fourier transforms are calculated

efticiently via the fast Fourier transform (FFT) [3]. A CGM algorithm which in-

corporates the FFT to carry out the convolution operations is often referred to as

CGFFT method of solution [4].

Other iterative methods utilizing the FFT algorithm have also been applied to

a number of scattering problems [5]-[7]. However, these solution techniques usually

suffer from two major defficiencies common to most iterative approaches: 1) conver-

gence is not strictly guaranteed, and 2) convergence is often slow. The conjugate

gradient method virtually eliminates the first problem because it guarantees mono-

tonic convergence throughout the process. As for the second problem, the number of

iterations required for the conjugate gradient method to yield a reasonable accuracy

is often a fraction of the total number of unknowns. This depends primarily on the

distribution of the dominant eigenvalues of the operator projected onto the system

matrix. It has been argued convincingly [8] that the standard conjugate gradient

method requires roughly twice as much computation time per solution as the Gaus-

sian elimination, which is an O(N 3) operation. However, the CGFFT is considerably

faster since it requires only 4N(1 q-log 2 N) operations per iteration-an overall O(N 2)

operation.

The speed of the CGFFT method can be improved further by incorporating the

subsectional expansion (basis) functions into the algorithm. In direct methods, it is

well known that the use of appropriate expansion functions to represent the unknown

current distribution plays an important role in the accuracy and convergence of the

solutions. In fact, a large body of literature exists on various types of basis functions
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and their implementation and performance in connection with direct approaches [9]-

[11]. This is not the case with regard to the CGFFT method and, therefore, it is of

interest to study the incorporation of these functions in the context of the CGFFT.

It was found in the course of this research that such a treatment results in a drastic

improvement (up to 100 percent) in the convergence rate of the method depending

on the type of basis that is employed for the current expansion.

Another area of interest addressed in this study is the incorporation of the gen-

eralized impedance boundary conditions [12, 13] in the CGFFT method. General-

ized Impedance Boundary Conditions (GIBC) are higher order boundary conditions

which involve derivatives of the fields beyond the first. They have been found to

be more effective than the traditional first order (standard) conditions in modeling

thick dielectric coatings and layers [14]. The GIBCs have been successfully utilized

in a number of analytical and asymptotic applications such as the Weiner-Hopf tech-

nique and function theoretic approaches [14]. However, their utility in numerical

methods has not been studied beyond the first order [15]. Applying these conditions

on the surface of a dielectricaUy coated scatterer circumvents the need for sampling

within the target's volume and hence considerably reduces the number of unknowns

required in the discretization of the problem. However, solution of these problems by

direct methods is challenging due to the difficulty in handling higher order deriva-

tives involved in the formulation. On the other hand, when the CGFFT method is

employed, the derivatives may be carried out in the transform domain without much

difficulty. These features make the formulation of such structures by generalized

boundary conditions highly desirable and, therefore, a part of this study is devoted

to the implementation and numerical study of GIBCs in connection with the CGFFT

method.
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Before clo6ingthissection,we remark that an inherent limitationof the itera-

tivesolution methods istheirrequirement that the solutionprocess be repeated for

each excitation.In directapproaches, on the other hand, once the system matrix is

inverted,the solutionfor any excitationisvirtuallyat hand. For thisreason, itera-

tivesolutionmethods may be computationaUy intensivein those scatteringproblems

where the target'sresponses to a number of differentexcitationsare of interest.This

may be the case, for a exaxnple, whengenerating the backscatter pattern for an

object,where the iterativesolutionmust be repeated for each excitation.A partial

remedy in thiscase is to use the resultsof the previous excitationas the starting

point (initialguess)forthe solutionof the next excitation.For a certainclassoflarge

problems, however, the memory considerationmay outweigh the possible disadvan-

tages in speed associated with the multiple excitations. Therefore, in choosing an

iterativemethod for these problems, the intensityof the computations and accuracy

requirements as well as the merits of low memory allocationsofferedby such meth-

ods must be carefullyexamined. In thisregard, some vector and parallelprocessing

featuresofferedby modem computing facilitiesare important in reducing the CPU

time in reaching convergence. At any rate,for problems involving a singleexaltation

such as antenna radiation problems, the CGFFT isgenerallymuch fasterthan the

general purpose matrix inversiontechniques.

1.2 Scope

This dissertationisdivided intothree parts. Part One (Chapters II through IV)

presents the CGFFT method as applied to radiation and scattering.In particular,

Chapter IIdiscussesthe basic formulation and the incorporation of the subsectional

expansion functions into the CGFFT method. Chapters Illand IV present applica-



tions of the method to one and two dimensional problems classified according to the

dimensionality of the employed Fourier transforms, respectively. These include

• Radiation from thin wire dipoles,

• Scattering by flat and cylindrical strips,

• Radiation of cylindrical reflector antennas,

• Radiation of dipoles in the presence of flat plates, and

• Scattering by dielectric cylinders.

For each application, the pertinent integral equations are derived and placed in a form

suitable for a solution via the CGFFT method. Chapter V presents the generalized

impedance boundary conditions and their incorporation into the CGFFT formulation

for the simulation of two- and three-dimensional impedance sheets.

Part Two presents a general study of a class of cavity structures and their anal-

ysis using CGFFT in conjunction with the GIBCs. In particular, Chapter VI is a

study of two-dimensional grooves of infinite extent, while Chapter VII presents a

corresponding study of three-dimensional cavities recessed in perfectly conducting

ground planes.

Part Three discusses a vector-concurrent implementation of the CGFFT algo-

rithm on supercomputers and multiprocessor machines. Chapter VIII presents re-

suits from a numerical implementation of an optimized CGFFT algorithm, which

further illustrate the potentials of the CGFFT in solving large electromagnetic scat-

tering and radiation problems.

In most cases, the accuracy of the solutions is confirmed by a comparison of

the obtained results with available measured data or data obtained from alternative



solution techniques. Some of the presented results are out of the reach of direct

solution techniques and can, thus, serve for validating future methodologies for large

scale electromagnetic simulations.

1.3 Basic Concepts

When an object is exposed to electromagnetic fields, the scattered field U ° is

defined as the difference between the total field U T in the presence of the object and

the incident field U i that would exist if the object were absent. That is

U ° = U T - U i (1.2)

The fundamental laws governing the behavior of electromagnetic fields in space

and time are Maxwell's equations commonly expressed in differential form as

VxE

VxH

V.D

V-B =

where

E = Electric field intensity, volts/m

Oil
mm

at
OD

= o---T+.1

-- p

0

H = Magnetic field intensity, amperes/m

D = Electric ttux density (displacement), coulombs/m 2

B = Magnetic Bux density (induction), webers/m _

J = Electric current density, amperes/m 2

p = Electric charge density, coulombs/m 3

(1.3)

(1.4)

(1.5)



and we shall use MKSC units throughout this study as indicated. The two curl

equations (1.3) and (1.4) are Faraday's induction law and the generalized Ampere's

circuit law, respectively, while the two divergence relations (1.5) and (1.6) are Gauss'

law for the electric and magnetic fields, respectively. The media interacting with the

electromagnetic fields are characterized by the so called constitutive relations and can

be classified according to their molecular structures and properties of their associated

bound charge particles. For a sufficiently simple medium these relations are

D = eE (1.7)

B = pH (1.8)

J - aE (1.9)

where e, /_ and a denote the permittivity, permeability, and conductivity of the

medium, respectively.

In the presence of stationary material interfaces(the surface of a scatterer, say),

an electromagnetic field satisfies the implicit(natural) boundary conditions

x(E1-E2) =0 (1.10)

x(H_-H2) =K (1.11)

_. (D_ - D2) =p, (1.12)

_. (B_- B2) = 0 (1.13)

where K and p0 denote surface current and charge densities at the interface separating

the two regions to which subscripts 1 and 2 correspond and _ is the unit normal to

the interface(usually taken to be outward with respect to the scatterer). The above

boundary conditions are easily established on the assumption that the tangential

components of D and B remain finite at the interface surface. It should be noted,
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however, that the last two conditions are not independent of the first two for time-

varying fields and are, therefore, redundant [16]. Moreover, if one medium is perfectly

conducting (a ---, oo), no electric field exists in that medium as asserted by (1.9).

Therefore, it follows from (1.10) that the tangential component of E is zero at the

surface of a perfect conductor.

In addition to (1.10)-(1.13), boundary conditions must be imposed at infinity

to obtain unique solutions to the radiation problems. Physically, these radiation

conditions require that solutions which represent outgoing waves traveling in a lossy

medium vanish at infinity.

Throughout this work we will consider harmonic time varying fields and adopt

the time convention e jwt. Thus, the Maxwell equations (1.3) and (1.4) become

V x E = -jwB (1.14)

VxH = j_D+J (1.15)

with the explicit time dependence suppressed. The constitutive parameters under

the time harmonic assumption are, in general, complex quantities. In particular, for

a conducting medium, Ampere's law (1.15) reads

V x H = J, +J, +jwD (1.16)

where J_ represents the externally impressed current source and Jc is the conduction

current generated in the medium due to ohmic loss. Employing the constitutive

relations (1.7) and (1.9), equation (1.16) can be rewritten

where, the quantity

V x H = J, + jw(e - ja/w)E (1.17)

e_ -- e. -- jalw (1.18)
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may be identified as the complex permittivity of the medium.

The solution of a scattering problem consists of finding the solution of Maxwell

equations which satisfy the boundary conditions at the surface of the scatterer and

which displays the proper behavior at infinity. Typically, this is carried out by deriv-

ing a suitable integral equation in terms of the unknown current density excited on

the scatterer. Two popular integral equations for the time-harmonic electromagnetic

fields are the electric field integral equation (EFIE) and the magnetic field integral

equation (MFIE). The EFIE enforces the boundary condition on the tangential elec-

tric field and can be used for both closed and open surfaces. The MFIE, on the other

hand, enforces the boundary condition on the tangential components of the magnetic

field and remains valid only for closed surfaces [17]. Since we are interested in both

types of scatterers, the EFIE is developed and applied in this study.

An equation for E may be obtained from Maxwell's equations by eliminating H in

(1.14) and (1.15) and using (1.7)-(1.9). Thus, assuming a homogeneous surrounding

medium, we have for the scattered electric field

V x V x E s - k2E 8 = -jw_uJ (1.19)

where k = wv/_"_ is the wave number in the medium. This is known as the vector

wave equation and the solution may be expressed as [18, 19]

E.=-jkz fffvD(r;r')-J(r')dv' (1.20)

where Z = _ is the intrinsic impedance of the medium, I" denotes the electric

dyadic Green's function in unbounded space given by

F(r; r') = (X + _-_2VV) G(r; r') (1.21)
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and G isthe scalarGreen's function

e-Jklr - _]
G(r;r') = 4:fir- r'] (1.22)

In the above, r and r_ clenote the field and source points, respectively and an explicit

expression of f' in Cartesian coordinates is

102 1 0_ 10 _
(1 + --2) k2 k2

k 20X OXOqy OXOZ

1 02 1 i)2 1 02

"k20yOz (1 + k--ZOy----5) k2 OyOz
G(r; r') (1.23)

1 02 1 t_ (1+ 1 02
k 20zOx k 20zOy k"-'i Oz.'.'5)

The magnetic field is then obtained from Faraday's law (1.14).

Equation (1.20) in conjunction with the appropriate boundary conditions on the

tangential component of the total electric field gives the EFIE integral equation to

be solved for the unknown current J. The specific form of this integral equation

depends on the particular problem under study. Once the current distribution is

evaluated from the integral equation, the scattered field throughout space may be

calculated from the scattering integral (1.20).

In radar applications, the target is completely characterized for the radar system

by a quantity known as the radar cross section (RCS) or echo area denoted by a(not

to be confused with the conductivity a). It is a measure of the reflective strength of

the target and is mathematically defined as

a = lim 4rR 2P" (1.24)
R--*oo Pi

where Po is the power flux density of the scattered wave in a specified direction at a

distance R from the scatterer, and P_ is the power flux density of the incident plane
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wave. The radar cross section is in general a function of frequency, polarization,

and angle of incidence. When the incident and pertinent scattering directions are

coincident but opposite in sense, (1.24) provides the monostatic or backscattering

cross section.

For two-dimensional targets which are infinite in extent along a given direction,

the scattering parameter is referred to as the radar cross section per unit length or

_2_= lim 2P°
p-.oo 2_p "_ •

echo width and is defined as

(1.25)

When the scatterer is long but finite in one dimension, the physical optics ap-

proximation may be used to relate the three-dimensional radar cross section of the

target to the associated two-dimensional echo width calculated on the assumption of

infinite length. Hence, for plane wave :ilumination normal to the long dimension of

the scatterer, we have

= 2( )2 2d (1.26)

where g denotes the length of the target in the long dimension.
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Part I

THE CONJUGATE GRADIENT

FFT METHOD



CHAPTER II

THE CGFFT FORMULATION

2.1 Introduction

The integrodifferential equations considered in radiation and scattering have the

general form

El(r) = y(r)J(r) + I/Iv f'(lr - r'l)" J(r') dv' (2.1)

where E _ denotes the excitation field, J is the unknown current density vector, r is

the associated dyadic Green's function, r and r _ specify the observation and integra-

tion points and y is the scalar function which depends on the electrical properties of

the scatterer or radiator.

In general, the above integral equation may be solved using direct methods such as

the Method of Moments [20]. However, as the size of the problem increases, iterative

techniques become more attractive for the solution of such equations. This is mainly

because iterative methods avoid the process of matrix inversion which is subject to

numerical instability for ill-conditioned matrices. Also, these schemes often involve

only the multiplication of matrices with vectors and thus do not require an explicit

storage of the system matrix.

15
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2.2 Description of the Conjugate Gradient Method

The conjugate gradient method is a nonlinear semi-direct purely-iterative scheme.

That is, assuming no truncation and roundoff errors, the exact solution is obtained

in a finite number of steps depending on the number of independent eigenvalues

of the operator matrix. This is achieved by applying the method to the normal

equations obtained by premultiplying the system matrix by its adjoint. Moreover,

the solution is improved at a monotonic rate throughout the process and convergence

is guaranteed for a given number of unknowns and as the order of approximation

is increased [21]. Convergence is accomplished via a systematic orthogonalization

of the solution vector with respect to the residual vector defined as the difference

between the left and right hand sides of the system at the end of each iteration.

That is, for a system representing N unknowns, the solution vector is constructed

from a set of N linearly independent (mutually conjugate) vectors orthogonal to the

residual vectors. Since these also form a linearly independent set, the exact solution

is obtained at the N-th iteration, but in general the solution can be constructed,

rather accurately, with only a few of the orthogonal vectors that span the solution

space. As a result, the desired tolerance is achieved in less than N iterations.

The method starts out with an initial guess Jo and a corresponding residual error

Pc. In each iteration, the residual vector is minimized not only along each local search

direction but also over the entire span of search directions. To this end, the solution

is expanded in terms of search vectors which would be generated by the modified

Gram-Schmidt orthogonalization scheme when applied to the sequence of residual

vectors as the basis functions 1. The set of search vectors {P,}, so constructed are

1The choice of the N-dimensional coordinate unit vectors as the basis functions would yield
Gaussian elimination.
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mutually A-orthogonal or conjugate (as opposed to orthogonal)

< Pi, A[P#] >= 0 , i :_ j (2.2)

The significance of this set of directions is as follows: for a quadratic function,

successive llne rninimizations along a conjugate set of directions will achieve the

minimum without the need to repeat minimization in any direction. Consequently,

the minimum is achieved at the end of a finite number of steps. For nonquadratic

functions, this guarantees quadratic convergence as the process goes on.

A version of the conjugate gradient algorithm to be used herein is [4]

Ro = .A[Jo]- E i

P0 = -b-l._a[R0]

Main Iteration Loop

1
1_n _-

11.4[Pdll_

Jn+l = J,_ + t,_Pn

P_+I = 1_ + t_A[P,]

1

b. = 11,4o[1_111_

P.+l = P_ - b=_4a[P_+l]

IIRI] _ 6
tlE'II -

Repeat If Necessary

(2.3)

The norm and the adjoint operator are defined in terms of the inner product as

IIUII2 =< U,U > (2.4)
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It may be shownthat [21]
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< .a[u],v >=< u,A'[v] >

.A_[J] = t/*(r)J(r) + I/Iv f'*(Ir - r'l)" J(r')dr'

where, denotes the complex conjugate.

2.3 Conjugate Gradient FFT Formalism

(2.5)

(2.6)

The scattering integral in (2.1) is of convolution type and can, therefore, be

evaluated in the spectral domain by invoking the convolution theorem. To describe

this process, we must introduce the forward and inverse Fourier transformations. For

one-dimensional functions, the Fourier transform pair is

_(kx)= f_ g(x)e-J_'_dx (2.7)

g(x)= _ _(k_)e_,*dk_ (2.8)

where k_ is the spectral variable and we use the following symbohsm to indicate the

relationship among the transform pair

g(x) _ _l(f:) (2.9)

Based on the above definitions, the convolution theorem is stated as [22]:

___g(x')h(_- x')dx'= g(_) • h(_) _ _(k_). _(k_) (2.101

Similarly, the two dimensional Fourier transform pair is defined as

_(kx, kz, ) = f_: jr_: g(x,Y)e-J(k'::+k'2')dxdy (2.11 /

IV/ g(x,y) = (2_r)2 _ _ _(k:_,kv)eJ(k'_+J"')dk=dk, (2.12)
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with the convolution theorem expressed as

/o/o
(2.13)

As usual, the transform of differentiated functions is given by

c3g _ j k __ (k =)
Ox

as

(2.14)

Using the Fourier transform notation, equation (2.1) can now be formally written

(2.15)

where _-i denotes the inverseFouriertransform operator. Clearly,(2.15)avoids the

generation of the square matrix corresponding to the operator .A implying a storage

requirement of O(N) as compared to O(N _) required with directimplementations.

The solution of (2.15) via the CGM will be referred to as the CGFFT solution

method.

The Fourier transforms implied in (2.15)are, of course, continuous whereas in

practice they willbe replaced with discreteFourier transforms (DFTs). It is,there-

fore,necessary that an accurate relationshipof the transforms in the discreteand

continuous domains be established.Otherwise, a solution in one domain may not be

representativeof that in the other. Alternatively,excessivesampling may be required

to represent the continuous sy-tc::_.

Consider the finite-durationfunction g whose M consecutive sampled valuescov-

ering the entiredomain of itsdefinitionare given by

g,, = g(x,_) x,, = nAx n = 0,--. ,N - 1 (2.16)
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The one-dimensional forward and inverse discrete Fourier transforms (DFT) of this

sampled train are defined as [22]

N-1

gp = _._ gne -j2smp/N

n=O

(2.17)

and

i N-I

g. = _ E _,'/_""'/_ (2.1s)
p=0

where the consecutive spectral samples _p are separated by the spatial frequency

interval Af_ = 1/(N,_z). Similarly, the two-dimensional DFT pair is defined as

M-1 N-1

gpq = Y_ _ gmne -j2_(mp/M+nq/N)
m----O n=0

(2.19)

and

1 M-1 N-1

gmn = M----N _ _ gPqej21r(mplM÷nq/N) (2.20)
p=O q----O

For consistency, the transform of the differential operator (2.14) may be replaced

by first approximating the operator by its discrete counterpart. For example, using

a 3-point central difference scheme, we have

g(x,+_) - g(x,- _)
(2.21)

Az

_k.V _ ,-jk. V
Ax

whose Fourier transform is given by

Oz

or more compactly as

(2.22)

(2.23)c3g _¢_ jD,,(k,)_(kx)
Oz

where

k " AX
D, = xsmc(k.-_--) (2.24)
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andsine(x) = sin(z) is known as the sampling function. It is seen that the transforms
X

of the continuous and discrete derivatives (equations (2.14) and (2.23)) become equal

as the spatial sampling interval becomes vanishingly small since

lira sine(x) = 1
z--,*O

More accurate expressions may be derived by using higher order difference formulae.

For example, employing the 5-point central difference scheme, we have

[ ] 3Az]'+g(xi-- 3A:r

Ag 8g(x,+ - g(x, + , --i) - Sg(x,-
_ _ (2.25)

(xi) _ _ s 12Ax

and the corresponding transform pair is given by

Og _ 2 Ax 1. Ax ~
-_z jkx[-_sine(k,-_.'-) - "_smc(3kx-_-)]9(k,). (2.26)

2.4 Incorporation of Subsectional Expansion Functions

In the Method of Moments, it is well known that the use of appropriate expansion

(basis) functions to represent the unknown current distribution, plays an important

role in the accuracy and convergence of the solutions.

The employment of the subsectional basis functions to iterative methods involv-

ing the FFT was initially proposed in connection with the Spectral Iterative Tech-

nique (SIT) [23] and was shown to produce improvements in the rate of convergence.

However, no quantitative conclusions were drawn because of convergence difficul-

ties associated with the SIT. Here, a systematic study of the incorporation of basis

functions into the CGFFT method will be considered.

An assumption in the derivation of the DFT pair (2.17)-(2.18) is the validity of

F_(k_) = oog(x)e-Jk'_dx _ y_g,,e-Sk'="Ax (2.27)
n

the integral approximation
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implying that the integrand isconstant over each sampling intervalin (2.27). In

other words,

g(x)e-Jk. == = g,. % jg,,, = const, z,, _< x < x,+l (2.28)

g,(z) = _e {g(x)} = g,,cos(kxx) - gi, sin(k=x) (2.29)

gi(z) = _m {g(x)} = g,,sin(kxx)+ gi, cos(kxx) (2.30)

It has been observed [24] that the above dependence of the implied discrete rep-

resentation of a given continuous function can play a major role in degrading the

convergence rate of the CGFFT solution. It is, therefore, essential that some cor-

rective procedure be taken and an obvious approach is to employ a higher order

integration formula to replace (2.27). This was discussed in [24] but as can be ex-

pected, it results in a slower DFT algorithm. An alternative [23, 25] is to expand

g(x) in a sequence of subsectional expansion functions {f,} as

N-I N-I

g(z) ----_ gn f.(z) -- _ g,,f(z--x.)
n----O n=O

where the second equality implies the invariance of the basis functions with respect

to translation in the x-coordinate. Introducing the Dirac delta function

/ 1, = = 0
_(x) (2.32).==.

! 0, else

equation (2.31) may be rewritten as a convolution in the form

/V-1

g(x) = f(x) • _ g, _(x- =,) (2.33)
Tt_-0

(2.31)

where g,_ = _e {g,} and gi,_ = _m {g,}. A consequence of (2.28) is that g(x) is

not constant over the interval and is, in fact, a function of both spatial and spectral

variables. Thus, from a solution of (2.28)
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The Fourier transform of g(x) is thus given by

= f. _ (2.34)

where f is the Fourier transforms of the chosen basis function and _ is the discrete

Fourier transform of g as given by (2.18). Equation (2.34) establishes the relationship

between the continuous and discrete Fourier transforms when subsectional expansion

functions are employed.

Customary forms of the basis function f(x) include the piecewise constant (PWC)

and the overlapping piecewise sinusoidal (PWS) expansion functions given by

Ax

1 Ixl< -v-
P(x) = (2.35)

0 else

sin[ko(Ax-Ixl)l Ixl_<Az
Q(x) = sin(koAx) (2.36)

0 else

respectively where ko denotes the free space wave number. For these choices, we have

the Fourier transforms

Ax

_B(kr) = Axsinc(kz--_-) (2.37)

ko[cos(k_Ax) - cos(koAx)] (2.38)
0(k.) = sin(koZ_X)(ko'- kg)

and we observe that for a sufficiently small sampling interval

lim 13(kz) = Ax (2.39)
_z--..O

ko sin(koAx) - k= sin(k=Ax)

_os(ko/,_)(ko_- k_)

= Ax (2.40)
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where use has been made of l'H6pital's rule and the approximations

sin x ,,, x cos x ,,_ 1 , ]x I << 1

Therefore, for vanishingly small sub-intervals, the relation

_(f_) __ Ax.._ (2.41)

holds when the above expansion functions are employed. Apart from the multiplying

constant, (2.41) is the transform of g(x) when f(x) = 6(x)-delta basis. Since the

same result can also be derived via direct application of the rectangular rule of inte-

gration (2.27) in the computation of the Fourier integral, (2.41) has been exclusively

associated with the conventional application of the FFT algorithm despite the fact

that it holds true for subsectional expansion functions as well. As will be shown

later, the convergence of the CGFFT method is improved considerably if the more

accurate expression (2.34) is used in the formulation instead of (2.41).

In the case of a two dimensional current representations, an appropriate expansion

is

N-1 M-!

g(x,y)= f(x,y)• - x.)6(y- y,.) (2.42)
n=O m=O

where f(x, y) denotes the surface basis function and (2.34) still holds with the trans-

forms interpreted as two-dimensional ones.

Often, it is necessary that the basis function be chosen to have a different func-

tional dependence in the x and y directions. For example, when representing the

currents on a thin plate a more suitable basis function is of the form

f(x,y) = P(x)Q(y) or

having the corresponding Fourier transforms

/= and

fCx, Y) =Q(x)P(y) (2.43)

f= O,(k,:)P(k,j) (2.44)
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and P, Q,/5, and Q are given in (2.35)-(2.36) and (2.37)-(2.38). Again, as Ax and

Ay both go to zero, equations (2.44) :educe to

_(k_,kv) _ AS_ (2.45)

where AS = AxAy is the incremental surface element.

The above analysis enables one to incorporate the subsectional expansion func-

tions into the CGFFT formulation. Using (2.34), equation (2.15) can now be written

as

+ (2.46)

Obviously, the transform ] of the basis function needs to be computed only once and

thus the computations per iteration implied by (2.15) and (2.46) are essentially the

same.

2.5 Numerical Considerations

Equations (2.15) and (2.46) are valid only on the body of the scatterer. That is

the domain of the Fourier transform is not infinite and for this reason, they cannot

be solved directly for J in the spectral domain. To solve for J, (2.15) and (2.46)

must be enforced on the scatterer in the spatial domain along with the sampling

requirements and linearity of the corresponding discrete convolution [22]. In a dis-

crete implementation of (2.46), the sampling intervals should be chosen so that the

Nyquist criterion is satisfied in the spatial domain. Also the length of the FFT (re-

ferred to as FFT pad) must be large enough to accommodate the spectral contents

of the convolved quantities. That is, the truncation of the spectrum should cause

minimal errors in the iteration process.
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In general, the period M of the array to be transformed is chosen according to

the relation

N' = 2 _ : N' _> NNyquis t N' >_ 2N - 1 (2.47)

where N is the number of unknown coefficients in the discretization of the current

density and v is an integer. In practice, v is chosen to be the smallest integer

satisfying the relation

v _> log2(2N - I) + (2.48)

where _ is also an integer (usually unity) setting the order of the FFT pad. The array

elements beyond the physical extent of the scatterer are set to zero before (forward)

and after (inverse) transformation.

In scattering computations, a usual practice in the implementation of (2.46) is

to employ a sampling interval of at least 1/10 of a wavelength and an FFT length

at least twice (order _ = 1) that of the linear dimension of the scatterer in or-

der to accommodate the spectral spreading due to the convolution. The sampling

requirement is more serious for antenna problems where one is interested in an accu-

rate evaluation of the surface fields for input impedance calculations. The FFT size

should be chosen to minimize abasing errors caused by the truncation of the Fourier

transform of the Green's function. However, as seen from (2.15) and (2.46), when

minimizing abasing, the entire quantity in the curly brackets must be considered.

This involves the product of the transforms of the current with the Green's function.

When the current density is not expected to be associated with spatial singularities,

its transform will be essentially bandlimited and an FFT length of order e = 1 should

be adequate to represent the spectral content of the convolution without noticeable

aliasing error. However, when the current density is associated with spatial singu-
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larities as in the case of E-polarized excitation for a thin conducting strip, aliasing

is expected to cause substantial error unless corrective means are introduced. In

general, to eliminate aliasing errors when employing the discrete Fourier transform,

we must form periodic functions in the spatial and spectral domains [26] and this is

the basis of the corrective procedure discussed later in the thesis.

2.6 Summary

A general overview of the conjugate gradient algorithm for solving electromag-

netic scattering and radiation problems was presented. By introducing the Fourier

transform pair and employing the convolution theorem, the electric field integral

equation was placed in a form suitable for a solution via the conjugate gradient

method.

The incorporation of subsectional expansion functions into the CGFFT method

was also discussed. A simple relationship between the continuous and discrete Fourier

transforms of the unknown function was established in terms of the transform of

the employed expansion function. The relationship holds for both one- and two-

dimensional cases and may be considered as a generalization of a commonly used

expression in the conventional application of FFT. The practical advantages of using

the subsectional basis functions will be examined in the next two chapters.

Finally, since the Fourier transforms involved in the calculations are computed by

the fast Fourier transform, some numerical aspects of the method were also addressed.



CHAPTER III

RADIATION AND SCATTERING FROM

WIRES AND STRIPS

3.1 Introduction

In this chapter the CGFFT method will be applied to the analysis of wire dipoles

as well as flat and circular cylindrical strips.

The radiation by a center-fed cylindrical wire dipole has been extensively studied

with analytical approaches [27, 28] as well as traditional numerical techniques such as

the method of moments [29, 30]. It is, thus, instructive to consider an application of

the CGFFT solution method to this problem first. Two classic integral equations for

the total current distribution over conducting wires are referred to as Pocklington's

integrodifferential equation and Hallen's integral equation. The latter is usually

restricted to the use of a delta-gap voltage source model at the feed of a wire antenna

while the former is more general and is adaptable to other excitations.

The scattering behavior of thin strips has also been studied in some detail in the

last three decades. These include the scattering from conductive [31] and resistive

strips [32, 33] as well as the analysis and synthesis of tapered strips [34, 35]. These

studies have focused on fiat strips. On the other hand, a numerical solution method

for thin dielectric slabs of uniform thickness and arbitrary shape was given as early

28
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as 1965[36,37] by discretizing the slab and forming a linear systemof equationsto

be solvedvia the Method of Moments.

In the presentstudy, the CGFFT will beapplied for computing the scattering by

the flat and circular strip problem. It is shownthat for circular strips the convolu-

tional form of the integral is preserved in terms of the angular parameter ¢.

3.2 Radiation of a Thin Wire Dipole

Consider a z-directed cylindrical dipole of length ! and radius a << l radiating

in free space. The electric field due to the excited current distribution Kz over the

antenna is given by the scattering integral (1.20). If the wire is thin, the current at

the end faces is negligible and the radiated field in the cylindrical coordinates is then

given by

( 1 _q2) _ 2,rk-o_ZZ 2 "e-jk°RE:(p,z) = -jkoZo 1 + f-_ fo K,(¢',z) 4--._ ad¢'dz' (3.1)

where R is the distance between the observation point (p, ¢, z) and the source point

(a,¢', z_)

R = _/p2 + a_ _ 2pa cos(¢ - ¢') + (z - z') 2 (3.2)

and 7-0 and ko are the intrinsic impedance and wave number of the free space, re-

spectively. For a ¢ - symmetric method of feeding [38], the surface current density

Kz is azimuthally uniform and the total current is given by Iz = 27raKe. Moreover,

since the radiated field is independent of ¢, we may set ¢ = 0 for convenience. By

enforcing the boundary condition

E;(,,,z) + E;(,,,z) = O, C3.3_
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stating that the tangential field vanishes on the wire surface, we obtain the Pock-

lington's integral equation [39]

Ei,(z) = jkoZo 1 + _o _z i I,(z')G,_(z - z')dz' (3.4)
2

In the above, G_(z, z') is the Green's function (also referred to as the ezact kernel)

given by

where

1 _0 2_ e -jk°Ra,,(z- z')= _ 4rR de (3.5)

( '°')lAa[I] = -jkoZo 1 + f¢o_-zz2 ½ I(z')G*,,,(z- z')dz'

A form of (3.4) compatible with (2.15) is

E;(z) jZo=To {(ko-

(3.9)

(3.10)

¢R= (z- z') 2 +4a2sin_ (3.6)

The above integral equation may be simplified further for an electrically thin

dipole(koa << 1). In this case, a total filamentary line-source may be assumed to

flow along the center of the antenna along the z-axis. The angular integration over

¢ is avoided and G,, is replaced by the reduced kernel

e-jkor

G.(z- z')= 4r'----_ (3.7)

where r is the distance from a field point (a, ¢, z) on the cylindrical surface to a

source point (0, 0, z') on the z-axis

r = _/(_- z,)2+ a2 (3.s)

Comparing (3.4) with (1.1) we may identify the right hand side of (3.4) as .A[I]

whose adjoint is given by
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where

=

exact kernel

(3.11)

1Ko(a_/k_ - k2o) reduced kernel

is the Fourier transform of the Green's function in which Io and Ko are the zeroth

order modified Bessel functions of the first and second kind, respectively. Upon the

specification of the excitation field E i, expression (3.10) is now suitable for a solution

via the CGFFT method.

3.2.1 Dipole Excitation Models

Two excitation models commonly used in the analysis of the wire antennas,

namely the voltage gap model and the magnetic frill model are considered here.

Voltage Gap Model

In this model we assume that the antenna is excited by a finite constant voltage V,

across its feed terminal gap giving rise to an impressed electric field which is entirely

confined to the gap. Thus, the impressed field is expressed by

A

E'= iV+/A lzl_<_- (3.12)

where A is the gap width.

Magnetic Frill Model

The delta gap model (3.12) does not account for the fringing fields present outside

the gap region and, therefore, may not be accurate for near field and impedance

calculations. Clearly, this situation becomes worse as the gap becomes wider. To
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Figure 3.1: The magnetic frill model for antenna excitation.

include the effects of finite gap widths, the magnetic frill model was introduced [40].

This model is of practical importance specially in modeling of coaxial lines feeding

monopoles on a ground plane (Figure 3.1). The feed terminal is replaced by an

equivalent azimuthally directed magnetic current density that exists over an annular

ring. The inner radius of the ring is chosen to be the same as the radius of the wire a,

while the outer radius b is that of the coaxial cable feeding the monopole and whose

characteristic impedance is

zo = Zo 2r (3.13)

Assuming that the coaxial structure supports a purely TEM mode, its aperture field

may be approximated by

Yi
E'= P2pln(b/a) (3.14)

and upon closing the aperture with a perfect conductor and invoking the equivalence

principle in conjunction with image theory, we find that this field excitation can be
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replaced by the equivalent magnetic current

M - 2E_x fi

__ __ 1
pin(b/a) (3.15)

The electric field generated by this source on the axis of the antenna is readily found

to be [40]

1 e -jkR1 e-J kR2

E_(O,z) = 21n(b/a) ( R, R_ ) (3.16)

where

R1 = _+a 2 R2 = _+b 2

3.2.2 Input Impedance

Once the current distribution on the cylindrical body is known, the input impedance

can be computed from

1 f,

Z_,, = 1i(0)12 ,/_ ES,(a,z')I'(z')dz ' (3.17)

where E_ is the tangential surface field on the antenna given by

E_(a,z) = -E i, (3.18)

Thus, the input impedance is given by

__L__1 r'

Zi,, = .]_ E_(a,z')I*(z')dz' (3.19)II(0)l2 ,

and for a voltage gap model, the above equation reduces to the well known Ohm's

law

Yo
Z_.=_ (3.20)
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Figures 3.2 - 3.4 show resultsbased on the above formulation along with compar-

isonswith data obtained by the method ofmoments (MoM). In particular,Figure 3.2

and 3.3 show the convergence ofthe solutionsas a function of sampling densityusing

a magnetic frillmodel for the excitationfieldsand itisseen that the CGFFT and

MoM solutionsexhibitthe same convergence characteristics.Also Figure 3.4 depicts

the convergence of the input impedance (3.19)as a function of sample density and

itisagain observed that the CGFFT and MoM [41]solutionsconverge to the same

result.

The efl'ectof incorporating various expansion functions isconsidered next. The

current distributionon a 9A dipole based on a voltage gap excitationmodel isgiven

in Figure 3.5 as predictedvia a CGFFT or an MoM solution.Although allexpansion

functionsconsidered give similarresults,the employment of the piecewise sinusoidal

basisfunctions (PWS) drasticallyimproves the convergence of the CGFFT as seen

from Figure 3.6.Typically,an estimated 100% improvement in the convergence rate

of the CGFFT method was observed when employing the PVfS expansion functions.

Finally,Figure 3.7 shows the improvement in CPU time that can be attained on

employing a CGFFT solutionmethod versus a standard MoM solution.Clearly,the

CPU time requiredfora CGFFT solutionisa linearfunction ofthe system unknowns,

whereas in the case of a MoM solutionthe dependence isquadratic. Also, shown in

Figure 3.7 isthe improved convergence attributed to the use of higher order basis

functions.
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Figure 3.2: Numerical convergence of the linear current distribution for a 11 dipole

with increasing sampling density evaluated by the CGFFT. Top to bot-

tom: No. of samples = 15, 31, 63, 127; FFT pad order E= 2, 2, 2, 1;

Magnetic frill excitation model.
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Figure 3.3: Numerical convergence of the linear current distribution for a 1A dipole
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No. of samples = 15, 31, 63, 127; Magnetic frill excitation model.
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Figure 3.4: Real and imaginary parts of the input impedance for a 1A dipole (a/A =

0.005) as a function of sampling density.
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Radiation of a Thin Wire Dipole
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Figure 3.5: Current magnitude for a 9_ dipole (a = 0.005,_) computed by the MoM

and the CGFFT using different basis functions and a voltage gap model

for the source (13 unknown/)_).
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Radiation of a Thin Wire Dipole
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Figure 3.6: CGFFT conver._ence patterns for the 9A dipole (13 unknowns/A).
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Figure 3.7: A comparison of the CPU times required by the MoM and the CGFFT for

the solution of the resonant dipole problem (CGFFT tolerance: 0.003).
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3.3 Scattering from Flat Resistive Strips

A thin conducting sheet or non-magnetic dielectric layer can be represented by

a resistive sheet. In the case of a source-free dielectric layer having thickness r, we

have from (1.17)

V x H = jwecE (3.21)

It is customary to characterize the layer by an equivalent electric current density as

VxH = jw(ec - eo)E + jweoE

-- Jeq + jweoE (3.22)

where the equivalent current

J_q - jweo(e,. - 1)E (3.23)

is now assumed to radiate in free space. In the above, _ is the relative complex

permittivity of the layer ec/eO. When the layer is electrically thin (kr << 1), the

normal component of the electric field inside the layer is negligible. The dielectric

layer can therefore be replaced by a resistive sheet of surface current density

K = lim r [Jcq]tan
"r--*O

(3.24)

where

[Jc, ltan = J_q - (n" J_q) _ (3.25)

is the transverse volumetric current flowing across the layer. (fi is the upward unit

normal to the layer). In view of (3.23) we may write

E - (fi-E) fi = Z.K (3.26)
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where Zo is the resistivity (in f_ per unit squared) of the sheet

Zo
Z, = jkor(e¢ - 1) (3.27)

Therefore, a resistive 'sheet is an electric current sheet whose strength is proportional

to the local tangential electric field. For a thin conducting sheet of conductivity a,

(3.27) reduces to

1
Zo = -- (3.28)

_TT

Mathematically, the resistive sheet satisfies the boundary conditions [42]

1
--fixfix(E ++E-) = ZoK

2

(3.29)

fix(E +-E-) = 0

where E ± denotes the total field above and below the sheet. Using (3.29), integral

equations may be derived for computing the current induced on the strips for a given

excitation and in the following we consider their derivation and solution for each of

the principal polarizations separately.

3.3.1 Integral Equations

E-Polarization

Consider the E-Polarized wave

E' (3.30)

H' (3.31)

incident on the resistive strip of resistivity Zo and width w coincident with the x-axis

as shown in Figure 3.8. This excitation generates on the strip a z-directed current

= -(_ sin ¢o - _sin ¢o)Yoe j_°{_¢'_°+v'i"*°)
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Figure 3.8: Geometry of a strip illuminated by a plane wave.

Kz, giving rise to the scattered field

Fw '2E: = -jkoZo Kz(z')G,(kolx - z'l)dx'

where Go is the two dimensional Green's function given by

G.(=- =')= _H(2)Ckol=- ='1)

(3.32)

(3.33)

and H (2) is the zeroth order Hankel function of the second kind. Imposing the con-

dition (3.26) on the total tangential electric field over the strip, an integral equation

for It'z is obtained as

Y°_k*=c'_'_° = tl'K'(x) + "T K,(x')H(_ ') (kol=- ='1) d=' (3.34)

where r/, = Zs/Zo is the normalized surface impedance of the strip.

H-Polarization

Consider now the H-polarized plane wave

H i = ie/k.(xc*,¢.+_,i-¢.)

E i = Z°(£ sin _0 - £'cos _bo) e iko(=e°s'b*+ll*in¢_°)

(3.35)

(3.36)
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incident on the resistive strip. This excitation generates an x-directed current density

responsible for the scattered field given by

E_ = -jkoZo 1 +---ff_x2 K=(z')G,(kolx- z'[)dz'k_o /2
(3.37)

Again, by imposing the resistive boundary condition, the integral equation satisfied

by the current density Kz is obtained as

ko(sin toe jk_¢°*¢° = rloKz(z) + -_ 1 + ----1 a 2 //_/2 K (x')H(2(kolX xtl)dT, t

(3.38)

The far zone scattered fields at the cylindrical point (p, ¢) can be computed from

the scattering integral using the large argument approximation of the Hankel function

.f 2j e_jkop kop "--*oo (3.39)
g{_2)(k°P) "' V_,p '

Upon using the approximations

]p - p'] " p - z'cos ¢ _ p (3.40)

for the phase and amplitude considerations, respectively, we have

E: = e-i*°p ej _ koZo /"2- f,_/2 g,(x,)ejk,,_,¢O.#dx,
v_ 4 V rko J-_/2

and

(3.41)

e-J_----_PeJ_k°Z-----_°_sin C F:}2 K=(x')eJk_'¢"#dx' (3.42)E:= _ 4

for E and H polarizations. The two-dimensional scattering echo width is defined as

• IE'l
a = plimoo2zP_E7 _ (3.43)
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and therefore

_ kol=cr (3.45)

Typically, a solution of (3.34) and (3.38) can be accomplished numerically. How-

ever, approximate analytical solutions exist for the perfectly conducting case if the

strip is electrically very narrow or very wide. These solutions are based on the

quasi-static and physical optics approximations of the pertinent integral equations,

respectively. They may be used to find closed form expressions for the echo width

of the strip.

For a perfectly conducting strip Zo = 0 and the integral equations for the surface

current densities are given by

ejk,,zeo_# ° __ koZo F: 2 K,(x,)H{o2)(kolx_ x'[)dx' (3.46)
4 /2

and

1 02 ) [_,12sin ¢oe/ko_ cO.#o = ko 1 +--_-_x 2 K.(z')HCo2)(kolz- z'l)dz'
4 k2o J-_12

3.3.2 Very Narrow Strips

(3.47)

A general analysis of narrow strips and slots can be carried out analytically by

employing certain quasi-static approximations to the integral equations developed in

the previous section [43]. Since a similar analysis will be carried out in the study of

narrow filled grooves in C'apter 6, we will present it here for completeness.

When kow << 1 in the integral equations (3.46) and (3.47), we may introduce the
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small argument expansion for the Hankel function [44],

Hp(z)

where In 7 = 1.78108... is Euler's constant. Retaining only terms to O(koW) in the

Hankel function as well as the incident fields, we have

27rj [(_._)In "Ir]f_'12K,(z')dx' (3.49)J-_,l_["12g,(x')ln ]x - x'ldx'= koZo + 3_ J-,,,12

for E-polarization and

0_L
F: '2 g,(z') In Ix - x'ldx' = 2rjko sin ¢o (3.50)Ox 2 12

for H-polarization. Further, by introducing the change of variables

2x 2x'
_=--, _'=-- (3.51)

W W

equations (3.49) and (3.50) respectively become

/_ K.(C)ln I_- CId_' = kowZo In + /_lK,(_')d_' (3.52)

d_ rl
f-1K,_(_') in I_ - _'ld_ ' = jrkowsin ¢o (3.53)

To solve (3.52) and (3.53) we recall the following identities from the finite Hilbert

transform theory [43, 45]:

In Ix - z'l, 7¢/'_ffi_dx'=-zin2 x E [-1,1] (3.54)

and

d-L f_ ' V/'f-x'_lnlx-x'ldx'=_ x e [-1,11 (3.55)dx 2 1

and since the right hand sides of (3.52) of (3.53) are independent of _ we deduce that

X, X, (3.56)
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and

 (x)2 (3.57)

where Xe and Xh are constants to be determined. By substituting (3.56)-(3.57) into

(3.52)-(3.53) we readily obtain

and

4j
(3.58)

kow In + 3

Xh = jkow sin ¢o (3.59)

As expected (3.56) and (3.57) display the familiar edge behaviors at the terminations

of the strip [46].

The scattering echo widths are computed from (3.44) and (3.45). However, in

this case, we may use the approximation (3.40) for both amplitude and phase due

to the small width of the strip. Thus,

= k_[z [,,/2 K*(x')dz' _ (3.60)(re 41 o J-_.12

and upon substituting for the currents, we obtain the simple expressions

and

k _'w 12 _'A

ah = ko -_'-Xh sm¢ = sin¢

valid in the backscatter direction.

(3.61)

(3.62)

(3.63)
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3.3.3 Very Wide Strips

For electricallywide strips,the localelectriccurrent may be assumed to be that

corresponding to an infinitelywide strip.This isknown as the physical opticsap-

proximation and isexpressed as

K = 2fi × H (3.64)

or more explicitly,

for E-polarization and

Kz(x) = 2Yosin¢oe/k_¢°'*° (3.65)

Ks(z) = 2e jk°=c°'_° (3.66)

for H-polarization.

The physical optics approximations may also be derived directly from the gov-

erning integral equating (3.46) and (3.47) when the strip is assumed to be infinite in

extent. Hence, we have

-- /w/2e#k_c°'*° - jkoZo tim K.(x')G.(z;x')dx' (3.67)
koW'-.*oo J-w/2

for E-polarization and

[(J lira ]./2 K=(x') k_ + Go(x;x')dx' (3.68)sin¢oe _k'_° = _ ko_, ooJ-_12

for H-polarization. The integrals on the right hand sides of (3.67) and (3.68) are

equivalent to

jf,o K_(x')Go(x;x')dx' (3.69)
OO
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and are identified as convolutions in the infinite domain. Thus, upon invoking the

convolution theorem and using the transform pair

e jk°_':°'¢° _ 2,rS(k_-kocoS_o) (3.71)

we have, by taking the Fourier transforms of both sides of (3.67) and (3.68)

2,,_(k_- koCOS_o) = jkoZo-gz(k_)_o(k_) (3.72)

J _ 2

2_"sin _bo6(k_ - ko cos _bo) = "-_oK_(k_)(ko - k_)Go(k_)
(3.73)

Formally, the above equations can be solved algebraically for the transforms of the

currents Kz and K_ to yield

"K2Ck_)= 2_rS(k_- k0cos_bo) (3.74)
jkoZo_.(k.)

and

"K_(k_) = 2_rko sin c_o6(k_ - ko cos _bo) (3.75)

Taking the inverse transforms of both sides now gives

K,(_) _ 1 // /5(k= - ko cos do) ejk,=dk=jkoZo oo G.(k_)
ej koX col _o

jkoZo_.(ko coS_°)
(3.76)

K_(_) ko sin _bo/_,o /_(kz -/Co cos qbo)_k,rdk x- j 00(k._- k_)(_.(k_)
ko sin _boejk_'_4'°

= j(k_ - k_)_0(kocos_o)
(3.77)

where use was made of the properties of the 6 function. The Fourier transform of

the Green's function (_° is given by (Appendix B)

(_o(k_) - 1 (3.78)
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and when this is substituted in (3.76) and (3.77), we recover (3.65) and (3.66).

To find the physical optics echo widths, we substitute (3.76) and (3.77) into (3.44)

and (3.45). In the backscatter direction ¢o = ¢, we readily find

- kow 2 sin ¢sinc2(kow cos ¢) (3.79)

for both polarizations.

3.3.4 CGFFT Solution

We will now consider the solution of (3.34) and (3.38) for arbitrary size strip

via the CGFFT method. To do this, we must rewrite these equations in a form

compatible with (2.46). The Fourier transform of Go is given by (3.78)

(_.(kz) = 1

and therefore (3.34) and (3.38) may be rewritten as

= ,7.K.(::)+jkoy-, {(Z(kz)g.(k.)i(k.)} (3.80)

and

J
sin_og_Ox_a_O=r/oK_(z)+._o _-z {(k_o_k2x)_o(kx)_xf(kx)} (3.81)

respectively. These may now be solved via the CGFFT algorithm.

Echo width patterns based on a CG solution of (3.80) and (3.81) are compared

with MoM data in Figures 3.9 and 3.10, respectively. The strip is 4A wide and has

a non-uniform resistivity as shown. In practice, tapered resistive cards are often

employed for radar cross section reduction and Figure 3.11 demonstrates an example

of such a reduction in connection with a strip having a resistivity that is tapered

parabolically as given in Figures 3.9 and 3.10. The choice of basis functions is again
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Figure 3.9: E-polarization scattering results for a 4_ parabolically tapered strip.
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a factor in the convergence _f the CG solution and similarly with the wire example,

the sinusoidal basis functions were found to provide a substantial improvement in

the convergence rate (almost 100 percent). This is shown in Figure 3.12 for the

H-polarization.

It should be noted that the expected behavior of the current density plays a

major role in the choice of the FFT pad used in the calculations. This is related to

the spectral content of the current as well as the singularity of the pertinent Green's

function. The field distributions over open conducting bodies and their singular

behavior have been studied by sever_ authors in order to establish such behavior in

explicit numerical terms (see for example [47]).

Consider the H-polarization case (TEz) first. In this case, the current density is

not singular and-like the current density on the wire dipole studied in the previous

section-it vanishes at the edges, rendering its transform essentially band-limited.

Therefore, an FFT length of order 1 (_ = 1) should be adequate to satisfy the

spectral spreading due to convolution without noticeable aliasing error.

On the other hand, for the E-polarization incidence (TMz) the current density

is singular at the edges and aliasing is expected to occur in the transform domain.

This may cause substantial error unless high sampling rates are employed in the

spatial and spectral domains to avoid aliasing. For example, the CGFFT solution

for the perfectly conducting strip presented in Figure 3.9 for the E-polarization case

required an FFT pad of order _ = 3. This is, of course, undesirable because it will

increase the memory dernan_, and execution time per iteration.

As mentioned in the previous sect ion, employing the analytical transform of the

Green's function is valid if the int_ al equation is defined on the entire real axis

(infinite domain). This was the case for the wide strip in the limit as the width
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Figure 3.12: Convergence patterns for the 4_ strip illuminated by an H-polarized

plane wave using 20 unknowns/,_.
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was taken to infinity. For finite strips, however, this approach gives an approximate

solution which improves by extending the size of the FFT pad to include higher

spectral components. For a given strip, the degree of improvement achieved depends

on the sampling density and the polarization of incident field.

To overcome this difficulty, an alternative is to discretize the integral in (3.34)

before proceeding with its computation via the discrete Fourier transform. That is,

assuming a pulse basis expansion for the current density,

N-1 A

g_(x) = _ K, Cx,)P(z- zn), x, = nA + _ (3.82)
rim0

we substitute (3.82) into the integral equation (3.34) and enforce it at discrete

points(point-matching) z_ = mA + _, m - 0,...,N - 1. This yields a linear

system of equations for the solution of the current density. In particular, we have

f,_/2 K,(z,)H(o2 ) (kolxm- x'l)dx' -- ]L,,=o Kz(x,_) H{o2) (ko]x_ - x'l)dx'ltD]2

(3.83)

and by interchanging the order of summation and integration,

N-1

N-,__,Ks(z,,) J=,,-_fx"+_H(o2) (kol:r',,, _ x'l)dx' = _ g,(x,_lT(x,,, - x,,)
_=0 rim0

In the above, T(z_ - z,_) = T_, are the mutual admittance elements given by

._..A 1---_. In( )--1 , n=m

Tmn -_

n T_m_ Z'HJ_(kolX,_- _,,I),

(3.84)

(3.85)

f]'/_ g,(x')H_o_)(kolx,,,- x'l)dz'= DFT-' {Kz_'}
t_12

(3.86)

discrete Fourier transform as

of the convolution integral may now be carried out without aliasing errors via the

in which In 7 is the Euler's constant. Since T is not singular anywhere, the evaluation
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where DFT -1 denotes the inverse discrete Fourier transform and T is the discrete

transform of the sample train T_,n - -(N - 1),-.., N - 1.

Expression (3.86) renders the evaluation of the convolution relatively insensitive

to the length of the" FFT provided the convolution requirement is satisfied. As

illustrated in Figure 3.13 for the case of normal incidence on a perfectly conducting

strip one wavelength wide, the predicted current distribution agrees with the MoM

result when (3.86) is employed in the CGFFT algorithm with an FFT size just twice

the length of the strip (FFT pad of order _ -- 1). In contrast, when employing

the sampled continuous analytical transform for the evaluation of the convolution

integral, the resulting current distribution remains in disagreement with the MoM

solution unless at ]east an FFT pad of order _ -- 3 (four times the size of the strip)

is used. The corresponding comparison of the bistatic scattering patterns is shown

in Figure 3.14 and the same observations again apply.

Hereon, the solution of (3.86) via the conjugate gradient method will be referred

to as the CGDFT method and the corresponding method of solution based on (3.80)

or (3.81) will be referred to as the CGFT method.
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Scoffering from a Conducting Strip
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Figure 3.13: Comparison of the current distribution on a IA wide perfectly conduct-

ing strip illuminated by a plane wave (E-pol, ¢o = 0) as computed by

various methods.



59

10

8

6

4

i °

-6

-8

-10

Scattering from a Conducting Strip
w=l.0A, E-Pol., Normal Incidence

-- MoM

"__ -o- CGFFT using

• .. CGFFT using Go (t_ = 1)

- CGFFT using Go (t = 3)

"""""'_

-''......_,

° I ' ' I '

90 120 150 180

Observation Angle _, deg.
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strip illuminated by a plane wave (F_,-pol, ¢o = 0) as computed by

various methods.
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Figure 3.15: Geometry of an infinitely long curved strip illuminated by a plane wave.

3.4 Scattering from Cylindrical Strips

Consider a thin cylindricalshellof resistivity,7illuminatedby a plane wave E iof

wave number ko and polarizationangle ¢ (Figure 3.15). The incident fieldisgiven

by

Ei(p) = (¢sin ¢ + _cos¢)Zoe-jko(f¢," P) (3.87)

where ¢ - 0 corresponds to E-polarization (TMz) while ¢ = -_r/2 corresponds to

H-polarization (TEz).

The scattered electric field due to the excited surface current K on the shell is

expressed by the line integral

E'(p) = -jkoZo ]_K(#). f(p; p')dl' (3.SS)

where f'denotes the electricdyadic Green's function in unbounded space given by

f'(P;P')= (i + _'_o_V) G.(p;p' ) (3.89)
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In the above,G, is the two-dimensional free space Green's function given by

Gs(p; p') = _jHCo21(kolP - P'I) (3.90)

The explicit form of r in cylindrical coordinates is

1 02 1 1 /}2

(1 + --_p2 ) Op0¢ 0k_ ko_p

1 1 0 2 1 022
k2opO¢Op (1 -t- (kop)2 0¢ ) 0 G,(p;p')

0 0 1

(3.91)

The total tangential electric field on the strip satisfies the resistive boundary

condition (3.26)

s T-/_-ST/_ = [S'+S']tan= Z.K

which upon substitution of (3.88) yields the desired integral equation

- _ x _ x Ei(p) -- Zo(p)K(p) + jkoZo f K(p') . r(p;p')dl ' (3.92)

to be solved for the unknown current distribution. In view of (3.90) this represents

a convolutional integral equation in K.

Let us now consider a solution of (3.92) for the special case of a circular strip of

radius a. Referring to Figure 3.16 and defining the phase reference at the origin, we

may write

dl = ad¢

JP- P'I = a [(cos ¢ - cos ¢') 2 + (sine-sine')2] ½

- 2a sin(l_-_l), (3.93)



62

¥

and

Figure 3.16: Geometry of a circularly curved strip.

ki" p = p0 - a cos(C-- ¢0) (3.94)

Also, since there is no variation in p and the strip is infinitesimally thin, (3.91)

reduces to

111+ (koa)2_¢2 ¢¢ + _ 2koasin(_ I¢ -2 ¢'1) ] (3.95)

The integral in (3.92) can thus be expressed as a convolution in ¢ yielding

(¢sin ¢+ £cos¢)e-jkocos(¢- ¢o) = rlo(¢)K(¢)+jko f K(¢')-_(¢; ¢')ad¢' (3.96)

where r/o is the normalized surface resistance of the strip and use has been made of

(3.94). For TEz incidence this becomes

koO[E_(¢)=r/°(¢)K_(¢)+- T- 1+

1 02

(koa)2 0¢ 2 ]f_ K,(¢')H_ 2, [2koasin(_
I¢- ¢'1

2 )] de'

(3.97)

while for TMz incidence we have

-¢'1) ] de', (3.98)
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Clearly,both (3.97)and (3.98)are amenable to a CGFFT solution.

It isnoted that ifthe radius of the stripislarge compared to itswidth, we may

modify the approximations (3.93)and (3.94)as

Um IP-p'l =
tt,-=I,OO

liraa cos(¢ - ¢0) -_
tl-=_OO

ale- ¢'1 _-Ix - x'l

a sin ¢o + a(_/2 - ¢) cos ¢o

= asin ¢0 + xcos ¢0 (3.99)

and the formulation reduces to that of scattering from a flat strip (see (3.38) and

(3.34))

(-£ sin ¢ sin ¢ + _ cos ¢)eJ ko(a sin _bo+ x cos ¢o) =

[,_/2 K(x'). r'(x;x')dx'
t/,(x)K(x) + jko ./-,./2

where K(x) = £K=(x) + _Kf(x) and P is now given by

1[ 10_,^^ _.1P(z;z') = _ (1 + _-g-_x_)zz + "_ H(o')(kolZ - x'l)

(3.100)

(3.101)

To solve (3.96) the current density is expanded in terms of a subsectional surface

N-1

K(¢) = E X.-_.(¢)

basis function _ as

n----0

,_.(¢) = ,1,(¢- ¢.)

where

and upon using the piecewise constant basis function,

(3.102)

(3.103)

(3.104)

with

f1

P(¢) =

i 0

'.¢/2 < ¢ < A¢/2
(3.105)

else
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Substituting for the current expansion in the integral on the right hand side of (3.96)

and interchanging the order of summation and integration, gives

fa _"(¢') " _(,;b; ¢')d¢' (3.106)a

n

Introducing (3.106) into (3.96) and applying Galerkin's method (Appendix A) yields

the system of equations

koa

V,. = A¢,7.,.K,. + _ _-'--',.,.- K. (3.107)

where

V,,, = ($sin,i,+ _cosg,) f_+"*/2 jk°c°s(¢-¢°)d¢ (3.108)
J¢,,-/,#12

The dyadic function

is a discrete kernel whose elements are given by

_rnn

(3.109)

= 1 + 2koasin( _ ) de'de

(3.110)

= [_+".12 [¢.,+AI2 H? ) [2koa sin(l¢- ¢'1].1¢,,-,',12 .]¢,,-tLI2 _ ) de'de (3.111)

V_ = A¢,/.,,K_ + _-_ DFT-' {_. K} (3.113)

and a similar expression may be obtained for _nC_n.

may be evaluated numerically.

Applying the discrete convolution theorem in (3.107) now gives

The remaining terms (n _ m)

It is noted that both _¢¢ and _zz have integrable singularities corresponding to the

self-cell interaction which can be approximated analytically. In particular,

_,_, __ _) - 2j (3.112)



65

which is in a form suitable for solution via the conjugate gradient method.

Once the surface current density is evaluated, the scattered field can be computed

using (3.88) as

F

ES(¢) = -jZokoa JcK(¢') • _(1¢ ¢'1)d¢'

Specializing this to the far-field, we find the scattering echo widths for the two

principal polarizations to be

I
for TMz polarization and

ko I [ " cos(_ - ¢0)d¢' 12= 71°sin,o (3.115)

for TEz polarization.

Sample calculations are now presented for circularly curved strips using the above

formulation. Figure 3.18 shows the bistatic scattering patterns for a 2A flat strip as

it is uniformly bent to form a dosed circular cylinder keeping its width (perimeter)

constant. The strip is positioned symmetrically around the y axis and illuminated by

a TMz plane wave incident at 90 degrees. It is noted that as the curvature _ increases

from zero (flat strip), the main (specular) lobe drops and eventually disappears in

the limit when the complete cylinder is achieved. The numerical result for the closed

cylinder is in agreement with the dassicM eigen-function solution [17]

_"(¢) = _ __ 1+ 6,,oH_2_(ko.) (3.116)

where J. is the Bessel function of order n and 6 m is the Kronecker delta function

f

1 p=q
_pq = [ o p#q

This is illustrated in Figure 3.19 for the same strip.

(3.117)
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*--- w=2X
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Q 1_=3.1416fL 0=360 °

Figure 3.17: A 2A wide conducting strip as it is uniformly bent to form a hollow

cylindrical tube. _ is the curvature of the strip and 0 is the polar angle

subtended by the strip.

3.5 Radiation by Cylindrical Reflector Antennas

Consider the circularcylindricalreflectorshown in Figure 3.20 illuminated by the

line source

E. = -z._o(_)Ckop)

The totalelectricfieldE T isevaluated in the fax zone(kop >> 1)

koZo 27__/ cos(_- '/")d_' -W

(3.118)

(3.119)



67

Bistatic Echowidth of a Circular Conducting Shell
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Figure 3.18: The bistatic echo width of the strip in Figure 3.17 illuminated at normal

incidence.

with the normalized radiation pattern of the reflector antenna given by

"-<+>-I'+_,],'<,<+'>_'0:<0"<+-+'>_+'I' <,.,:o>
Figure 3.21 shows the radiation pattern of an infinite electric line source in the

presence of a 2_rA cylindrical resistive strip (a = 4A/3). The line source is positioned

at the center of the strip and radiates through a right angle slit. As expected, the

nonzero resistivity reduces the directivity of the reflector.
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Bistat/c Echowidth of a Circular Conduct/ng Cylinder

w=2X, Normal Incidence _o0=90", E-Pol.
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Figure 3.19: A comparison of the computed bistatic echo width of a circular con-

ducting cylinder with the 20-term eigen-function solution.
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¥

Figure 3.20: Geometry of a cylindrical reflector antenna with a 90 degree circular

slit excited by an infinite electric line source.

3.6 Summary

Scattering and radiation from thin wires and strips were formulated using a stan-

dard integral equation approach. The convolutional integral equation was uniformly

discretized allowing the implementation of the fast Fourier transform for carrying out

the calculations. For the antenna problem, a larger sampling density was required

to yield an accurate evaluation of the input impedance.

Two formulations for a conjugate gradient solution of the scattering by resistive

strips were presented. The first formulation, namely, the CGFT method employed

the sampled continuous transform of the Green's function for the evaluation of the

convolution integrals. The other formulation, called CGDFT, employed finite dura-

tion discrete Fourier transforms for the evaluation of the same integrals. This was

found to provide a more accurate as well as a more efficient simulation since it elim-

inated all abasing errors. Notably, the system solved by the CGDFT method is the

same as that generated by the standard moment method procedure.
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It should be noted that (3.38)and (3.81)are also applicablefor computing the

scatteringby an impedance insertof width w. This simply requiresthe replacement

of Zo by the impedance of the insertand changing the polarizationof incidentfield.

The resultingecho width isthen twice that given for the resistivestripto account

for the presence of the ground plane. It should also be noted that the formulation

discussed in connection with the thin stripsisequally applicable to circularslabs

of finitethickness by introducing equivalent volumetric currents instead of surface

electric currents.



CHAPTER IV

RADIATION AND SCATTERING FROM

PLATES AND CYLINDERS

4.1 Introduction

Planar and cylindrical structures constitute simple but nevertheless important

components in man-made structures. Simulation of electromagnetic scattering from

these targets is of academic interest as well as practical value in computational elec-

tromagnetics. Understanding the electromagnetic scattering behavior of these struc-

tures is also important in modeling more complex targets as well as in radar detection

and cross section reduction. Although plates and cylinders have been the subject

of intense study in a wide range of frequencies, their numerical analysis have been

limited to the low frequency region, primarily due to computational limitations of

the traditional direct methods. In particular, experience with various numerical and

asymptotic methods of solution as well as comparison with measured data reveals

that there is a serious difficulty in accurately predicting the scattering behavior of

plates at grazing incidences where the edge currents and corner diffraction effects are

significant.

In this chapter, we first develop the necessary integral equations which are then

transformed to a suitable form for a solution via the CGFFT method. Two ap-

72
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proaches will be employed in the application of the method. The first implementa-

tion, previously referred to as the CGFT method in connection with the strip anal-

ysis, employs the sampled continuous Fourier transform of the free space Green's

function for the evaluation of the pertinent convolution integrals. This approach

assumes an infinite spatial domain in the definition of the Green's function. Thus, as

far as the Green's function is concerned, the finiteness of the target's physical extent

is not accounted for and unless a large FFT 'pad' with extended zero elements is

used, the method suffers from aliasing errors. A pad at least 3 times the size of

the target in each dimension is often needed to obtain acceptable results at oblique

and close to grazing incidences [48]. To alleviate this dii_culty, another approach,

previously referred to as the CGDFT method in connection with the strip problem,

will be employed where the pertinent integral equation is first cast into a discrete

form before the application of the convolution theorem to evaluate the integrals. As

observed in the case of the strip, this eliminates all aliasing errors, except perhaps

those attributed to a possible under-sampling of the current density.

Below, we discuss both of the above formulations for the solution of integral

equations arising in the computation of the scattering by resistive plates and dielectric

cylinders of arbitrary shapes and cross sections. The accuracy and efficiency of

these formulations are then examined by a comparison with measured data and data

generated by alternative techniques.

4.2 Scattering from Thin Plates

Consider a thin inhomogeneous plate of resistivity Z0 illuminated by an incident

field Ei and we are in_ _ted in evaluating the scattered field from the plate.

The scattered field due to the c_:cited surface current density, K on the plate is
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givenby the surface integral

E'(r) -- -jkoZo fa, K(r') • _(r; r')ds' (4.1)

where g' denotes the electric dyadic Green's function in unbounded space given by

f'(r; r') = (i + _-_2VV] Gp(r; r _) (4.2)

with

G_(r; r') =

The explicit form of f' is now given by

1 O2 1 02 \

(1 + k-_oOx----_ ) k_ OxOy

I

t' = Gp(r; r') (4.4)

1 0 2 1 0 2

k_ooyax (1+ -__y_k._)

e-Jkolr - r'l

4fir- r'l
(4.3)

The total tangential electric field on the plate satisfies the resistive boundary

condition (3.26)and the desiredintegralequation for the unknown current density

is

[E|(r)]ta n - Z0(r)K(r) + jkoZo/a K(r'). r(r;r')ds' (4.5)

in which r and r' denote the field and source points on the surfaz.e of the plate.

Expanding the current density in terms of a subsectional surface basis function _,

we write

where

M-1 N-I

KCz,y) = _ _, K,... _maCz,y)
m=O _=0

(4.6)

,i,_(_, y) = ,i,(_ - _..,y - y.) (4.7)

and

_,(x, y) = _¢x(x, y) + _¢_(_, y) (4.8)

in which ¢= and ¢_ are the expansion functions in the x and y directions, respectively.
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4.2.1 Formulation Using Continuous Transforms

Through application of the convolution theorem, the continuous transform of

J(x, y) as given in (4.6) can be written as

j=j. (4.9)

where J = _'L(x, y) + _J_(x,y) denotes the two dimensional discrete Fourier trans-

form of the train J,,, defined in (2.19). Also, J(k_, k_) = _(k=, kv) + ._(k:, k_) is

the continuous Fourier transform of J defined in (2.11) and • denotes the continuous

transform of the basis function.

By invoking the relation (2.14), the continuous transform of the free space dyadic

Green's function can also be written as

1 k'_

= k,)

k_k_ k 2

-T

(4.10)

where the subscript ij denotes the value of the quantity at the test point (xl,yj) on

the plate. It should be noted, though,that in performing the Fourier transformation

implied by (4.12), an FFT pad at least twice the size of the plate in each dimension

where (_p is the transform of the Green's function given by (Appendix B)

G,(k_:, k_,) - I (4.11)

2j_" 2_ 2_ 2

Equations (4.10) and (4.11 ) constitute analytical expressions for the Fourier trans-

form of the free space dyadic Green's function. Substituting these into (4.5) and

testing the resulting equation at discrete points (point-matching), yields the system

E,_ = Z,_Jij + jkoZo_-_{(_ . 7). J} (4.12)
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must be employed. In general, however, a much larger pad is required when the

analytical transform of the Green's function is used. Also care must be applied when

implementing (4.12) to avoid sampling at the singularity of the transform of the

Green's function as given in (4.11).

4.2.2 Formulation Using Discrete Transforms

In this formulation, the integral equation (4.5) is first discretized leading to ex-

pressions that can be identified as finite domain discrete convolutions. These can

then be evaluated via application of the discrete convolution theorem which is in-

herently cyclic, thus, avoiding aliasing errors. To cast the integral equation (4.5) in

discrete form we first employ (4.6) to rewrite the right hand side integral as

z ]J,n,, f_m,_(z,y) • r'(z,y; ,y ) (4.13)
Lm=O n=O

which, upon interchanging the order of summation and integration, may be written

as

M-1 N-1

___ J_, . _,_,,,,_(z',y'). F(z,y;z',y')ds _ (4.14)
m=O n=O

Introducing (4.14) into (4.5) and satisfying the resulting equation at a discrete set

of points (point matching) yields the system of equations

Eiij -- Z,ijKij + jkoZo ___ il¢ " K,,,,_
_ttn

The dyadic function

is a discrete kernel whose elements are given by

_i./ - (1 + fo2 _-'_) ,,,. Gp(zr, y;zr',_t')q.,_(z'- z,,,, -

(4.15)

(4.16)
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_7
1 0 2

,_[m G_(x, u; x', y')¢dx' - x_, u' - u.)ds'I

k_ Oxay

1 02 _,.. y; ,y)_x( --Xm, --ko_ozoy c_(z, z' "_ 'z' y' y.)d_'

(4.17)

1 02 _ y' y.)ds'_ - (1+ k-70x--z) .. ap(x,y;x',y')C_(x'- _, -

where a,_, is the incremental surface element corresponding to the mnth cell on the

plate and all expressions are evaluated at (x, y) = (x_, yi) upon differentiation. Obvi-

ously, the convolutional nature of the operation is preserved once the above functions

are evaluated at the appropriate field points. Applying the discrete convolution the-

orem in (4.15) now gives

E 0 = Z, ljKij + jkZo DFT-I{_, • K} (4.18)

where _, denotes the discrete Fourier transform of _,.

To calculate the elements of ._., the partial derivatives may be carried out by finite

difference formulae. In particular, using a 3-point central difference scheme ( 2.23 ),

we find that

2 2

1 ko - D z -DzD v

k o - D v

_" (4.19)

where _"is the discrete Fourier transform of the sequence(assuming piecewise constant

basis functions)
-jko_

_m'*= ,_,, 4__ ds (4.20)

and

A_g

D= = k_sinc(k=--_-) (4.21)

Ay
Du = kusinc(kv_- ) (4.22)
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corresponding to the self-cell interaction.

using one of the following approximations:

Approximate integration: From [49]

1 A 9 I

Ta_,lor series expansion" Expanding the integr_d of (4.20) as [5O]

as given in (2.24). It is noted that _ has an integrable singularity when z,_--y.=O

This term can be evaluated ana]yticaUy

• -jkoR I( (Jk2R)2-_ _- -_ 1- j koR + -

(4.23)

(Jk6R)3) (4.24)

_oo can then be expressed as

_00 '_ -_ ( II -- j koI2 -- _'_13 "_"j _'_ I4 ) [ V I V

'lI, = _ds = zla(y + R) + yln(x + R)

12 = // ds -- AzAy

Is = f / Rds = xy R z 3 yS+ y ln(y + R) + _- h_(x + R)

/ zYRU14 - R2ds - --_

~ fo2"fo_-jk°"-- 4_'r rdrd¢

= 2e--jkorO/2sinc (_)

where

(4.25)

Circular disk approximation:

where

(4.26)

ro- _/AzAy/_r (4.27)
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Figure 4.1 shows a comparison of these expressions for _oo for square cells (Ax =

Ay -- A) of different sizes. As seen, they all give values that are essentially indis-

tinguishable for A < 0.1,_. The remaining terms _,_ are evaluated numerically via

Gaussian quadrature integration. Using the above formulations, computations were

performed for a variety of plate sizes and shapes under two different excitations,

namely, plane wave excitation and Hertzian dipole excitation.

4.2.3 Plane Wave Scattering

Plates have been of considerable interest in plane wave scattering because they

often represent building blocks in the simulation of more complex configurations of

practical interest. An understanding of their scattering characteristics can, there-

fore, provide insightful information for design applications. In this case, simple high

frequency formulae are usually more suitable, but unfortunately, available expres-

sions have not been found to yield accurate results. On the other hand, numerical

simulations demand an excessive storage requirement making the CGFFT solution

method attractive for such simulations.

Consider the plate in Figure 4.2 illuminated by a plane wave

E | = E,,e-jko(_:i" r)

i^ El
H i = -_oki ×

(4.28)

(4.29)

where Zo and ko are the free space intrinsic impedance and wave number, respectively.

In the above, ki is the unit propagation vector

ki = -[sin Oo(_"cos ¢o + ffsin ¢0) + $cos 0o] (4.30)

and

Eo =  Eo. + +  Eoz
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Figure 4.2: Geometry of a polygonal plate illuminated by a plane wave.
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with

Eo= -- Eo(COS a cos 00 cos ¢o - sin c_ sin ¢o)

Eo_ = Eo(cos a cos 8,, sin ¢o -t- sin a cos ¢o)

Eo: = -EoCOsasin0o

(4.31)

where a representsthe polarizationangle ofthe incidentfield.Itisthe angle between

E iand 0. In particular,when a = 0 then H i = 0, corresponding to H-polarization,

and a = r/2 then E_ = 0, corresponding to E-polarizationincidence. Upon evalua-

tionof the current K, the scatteredfieldisgiven by

• e-J k°r

E°(O, ¢) = -3k,,Zo_N,(O,¢) (4.32)

where (r, 0, ¢) are the spherical coordinates of the observation point. Also,

N,(O,¢) = 0"Nt0(O, ¢) + CNt_(O, ¢) (4.33)

Nto(O,¢)=cosO[cos¢S_(O,¢)+sin¢Sv(O,¢)]-sinOS:(O,¢ ) (4.34)

Nt¢(O, ¢) = -sin ¢Sx(0, ¢) + cos ¢Su(0, ¢) (4.35)

and

S(8, ¢) = f f_ K(x',y')eik*c°'°[='c°'°+_'_°ldx'dy' (4.36)

The field E ° can also be described as that attributed to the radiation of the plate

currents and is responsible for the radar cross section of the plate defined as

a = lim 41rr 2IS°" 16_12 (4.37)
,--.oo IEil2

in which i_, is a unit vector denoting the polarization of the receiver.
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First, it is of interest to examine the current distributions on the rectangular plate

as it has a rather unique and predictable behavior, particularly for principal plane in-

cidences. Figure 4.3 depicts three-dimensional views of the co- and cross-polarization

currents on a 2_ x 2_ conducting plate. An important observation with regard to

these plots is the high current density values near the edges and the dominance of

the co-polarized current component relative to the cross-polarized component. The

singular behavior of the K_ currents at the edges is generic to perfectly conducting

structures with sharp edges. These singularities are responsible for the diffracted

fields and are the primary source of difficulty in numerical simulations. As 0 in-

creases, the strength of the cross-polarization currents also increases effecting the

behavior of the co-polarized currents, especially those toward the back edge of the

plate. When 0 = 90 °, K_ have their greatest strength. They are concentrated near

the side edges and are responsible for the travelling edge waves which, although not

radiating at backscatter, are crucial in determining the back edge co-polarized cur-

rent behavior. The lobing structure of the edge currents is particularly interesting

and unique to all rectangular plates regardless of their size. Generally, for an n_ x n_

plate, the magnitude of the co-polarized currents are associated with n maxima near

the front and back edges, whereas the cross polarized currents have 2n maxima near

the side edges.
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(a)

Figure 4.3: E-polarization plane wave scattering from a 2X x 2X conducting plate at

normal incidence (0i = 0 °, ¢i = 90", a = 90°); No. of samples: 66 x 66;

FFT pad size: 512 x 512. (a) Co-polarized component of the current

density. (b) Cross-polarized component of the current density.
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(b)
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Since the RCS of a structure is an easily measured quantity, it provides a means

for validating the solutions. Using the computed plate current densities, the radar

cross section (RCS) of the plate can be found in accordance with (4.37). Figure 4.4

illustrates the convergerice of the far zone scattered field (using pulse basis) by a

square perfectly conducting 2A x 2A plate as the size of the FFT pad is progressively

increased. In all cases the algorithm was terminated when the residual reached a

normalized value of about 0.01. Also shown in Figure 4.4 is the improved result

using the CGDFT method. It is observed that an FFT pad of order 1 (minimum

size) is sufficient when using the CGDFT to yield results that are in agreement with

the measured data. In contrast, at least a pad of order 3 (along each dimension) is

required to obtain acceptable results when using the CGFT method and although the

general behavior of the ba_:kscattering cro6s section approaches that of the measured,

the convergence to the measured value is not clear near grazing incidence even with

higher order pads. The principal plane backscatter RCS patterns as computed via

the CGDFT for the 2A x 2_ square plate are compared with the measured data in

Figure 4.5. The results are seen to be in very good agreement in this case.

Often of interest is the computation of the plate's edge-on scattering. As is

well known, for edge-on incidences the plate currents are rapidly varying and this

makes their computation a more challenging task. The accuracy of the proposed

formulations can therefore be best evaluated by examining the edge-on scattered

field. Some measured data for the edge-on radar cross section have been reported

in the literature. For example, Figure 4.6 shows the edge-on behavior of a plate

of constant width (b - 2A) and varying length (2A < a < 2.5A) with the electric

field aligned with the shorter side reported in [51]. As can be seen, they compare

quite favorably with corresponding values computed via the CGDFT formulation.
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Figure 4.4: Comparison of backscatter RCS patterns for a square 2A x 2A conducting

plate as computed via the CGFT and CGDFT methods using FFT pads

of various orders (E-Pol., normal incidence).
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It should be noted that the CGFT method employing the continuous transform of

the Green's function was found inadequate for an accurate predictionof the edge-on

scatteringbehavior [48].

The radar scatteringfrom a polygonal plate isshown in Figure 4.7 along with

the corresponding measured data [52].The scatteringcharacteristicsofgeometrically

complex targets may also be simulated by approximating the target by a polygon

of n sides.This isillustratedin Figure 4.8 where the plate has been modeled as a

polygon of 8 corners.
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Figure 4.7: E-polarization scattering from an irregular-edged conducting plate. (a)

Geometry. (b) Elevation-plane backscattering CGDFT result ( m ) com-

pared with measured data [52] (o o o).
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result (---) compared with the MoM data ( -- ).
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Resistiveplates are considered next. In practice conducting surfaces are replaced

with resistive cards for cross section reduction purposes. By defining the surface

resistivity Z_ as a function of position, different resistivity tapers may be treated.

As an example, the resistivity can be expressed by a nonlinear function

x,/2 ] \ u_2 (4.as)

where Zc and Z_ may be considered as the resistivities at the center and the edges of

a rectangular plate, respectively and rx and r_ denote the tapers in the corresponding

directions. Figure 4.9 shows the effect of uniform and non-uniform (parabolic) resis-

tive tapers on the monostatic cross section of a 2X x 2X plate. The bistatic behavior

of a polygon of 5 sides in the azimuth plane of 0 = 60 ° is shown in Figure 4.10. Also

shown is the result for the same plate with a parabolically tapered resistivity given

by

z° (_/ - 2 Zo (u/ - 2 (4.39)z.(=,u) =-_ - +T -

where Zo is the intrinsic impedance of free space.

The convergence characteristics of the CGDFT solution for a square 2X x 2X

conducting plate illuminated under normal incidence is shown in Figure 4.11. At

each iteration, both the normalized residual error, Ro and the incremental error in

the backscattering cross section, Aa are given. These are respectively defined as

n. = IlA[J,,,]- E'll
IIE'Ii (4.40)

and

Aa = a,,, -- a,,-x , dB (4.41 )

where rn denotes the iteration number. It is observed that for far field calculations,

accurate results can be obtained in much less number of iterations than that required
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to reach the true solution for the current density. In this case for example, an

incremental error of 0.1 dB (a relative error of 2%) in the backscattering RCS was

reached within only 6 iterations. At this point, the normalized residual error was

about 18%.
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Figure 4.9: E-polarization scattering from a square 2A x 2A plate with and without

resistive taper. (a) Backscatter RCS patterns for conducting plate (--),

uniformly tapered plate Zo - Zo/4 (- - -), and parabolically tapered plate

(...). (b) Three-dimensional view of the parabolic resistive taper for the

plate (Z°=,,, = 0).
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Figure4.10: E-polarization scattering from an irregular conducting plate with and

without resistive taper. Incidence angles: #o = 60 °, _o = 0°; Sampling

density = 225/A 2. (a) Geometry. (b) Bistatic scattering patterns with

(-- -) and without (--) resistive taper. (c) Three-dimensional view of

the parabolic resistive taper for the plate.
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Figure 4.12: Geometry of an arbitrarilyoriented Hertzian dipole in the vicinityof a

plate.

4.2.4 Radiation of a Dipole in the Presence of a Plate

In thissection,we consider the problem of radiation by a Hertzian dipole in the

presence of a resistiveplate,illustratedin Figure 4.12. The dipole is centered at

(Zl,Yl,Zl), is of length £ _ A and carries a constant excitation Current equal to

unity. Its presence excites currents on the resistive plate which contribute to the

overall radiation pattern. To compute the plate currents we must solve either (4.12)

or (4.18) with the incident field given as

E_ = (E,,_' + Es,0'). £" (4.42)

E_ - (E'.,F' + Ee,8'). _ (4.43)

where the primes indicatesphericalsystem parameters measured with respect to the

coordinate system at the dipole as shown in Figure 4.12. We have

E'., = 2Zokot (l _ j_-_) e-i#""4_rkor_ (_ • g) (4.44)

[ 1 1 ] e-i'°" _/1- (_". F')_ (4.45)Eo, = jZoko£ 1 + jkor _ (ko-r,)2 4_rr _
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in which _" denotes the dipole orientation and can be represented as

_" = cos Cr sin 0r5 + sin ¢_ sin Cry + cos 0_ (4.46)

where (Or, G) are the spherical angles of the dipole axis with respect to the plate's

coordinate system. Also, r' = r'ff is the vector drawn from the dipole's location to

the observation point on the plate and

_'xF'

O'- 13' x F' I x F' (4.47)

Numerical results based on a solution of (4.12) are given in Figures 4.13 through

4.18. An FFT pad of order ¢ = 2 and piecewise sinusoidal basis functions were

used to generate these results. In particular, Figure 4.13 illustrates the current

components on a perfectly conducting and a resistive 1,_ x 1,_ rectangular plate due

to illumination by a vertical electric dipole positioned at a distance A/4 above the

center of the plate. Figure 4.14 shows the spectrum (the magnitude of the Fourier

transform) of the x-component of the current density. The principal plane radiation

patterns of the dipole are shown in Figure 4.15. As seen, the pattern computed with

the CGFT is in good agreement with that based on the MoM. The corresponding

results for a horizontally oriented dipole above the same plate are given in Figures

4.16 through 4.17.

Finally, the improvement obtained in the convergence rate of the CGFT technique

when using piecewise sinusoidal (PWS) surface expansion functions is illustrated in

Figure 4.18. As before, an estimated 100 percent improvement in the convergence

rate was observed when the PWS basis functions were employed.
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Figure4.13: The excited surface current density on a 1,_ x 1,k conducting plate ir-

radiated by a vertical Hertzian dipole positioned a distance _/4 above

the center of the plate; 25 x 25 unknowns and FFT pad of order = 2.

(a) X-component. (b) Y-component.
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Figure4.14: The spectrumof the surface current density (x-component) on a 1A x 1A

plate irradiated by a vertical Hertzian dipole positioned a distance A/4

above the center of the plate (25 x 25 unknowns and FFT pad of order

_=2).
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(a) (b)

Figure 4.15: The principM plane radiation patterns of a-Hertzian dipole vertically

positioned at a distance A/4 above a 1A x 1A conducting plate computed

by the MoM (--), _nd CGFT (o • •) using sinusoidal basis functions.

(a) E0 pattern. (b) E_ pattern.
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Figure 4.16: The excited surface current density on a 1)_ x 1)_ conducting plate irra-

diated by a horizontal Hertzian dipole positioned a distance X/4 above

the center of the plate; 25 x 25 unknowns and FFT pad of order O = 2.

(a) Co-polarized component. (b) Cross-polarized component.
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Figure4.17: The principle plane radiation pattern (E0) of a Hertzian dipole hori-

zontaUy positioned at a distance _/4 above a 1 ), × 1_ conducting plate

computed by the MoM (--), and CGFT (. • .) using sinusoidal basis
functions.
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Figure4.18: Improvement in the convergence rate of the CGFT solution for the

problem of a hertzian dipole positioned above a conducting plate: Si-

nusoidal basis functions (-..), conventional FFT (delta basis) ( -- );

25 x 25 unknowns and FFT pad of order _ = 2.
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Figure 4.19: Geometry for a dielectric cylinder illuminated by a plane wave.

4.3 Scattering by Dielectric Cylinders

We now turn our attention to the problem of scattering by an inhomogeneous

isotropic dielectric cylinder of relative permittivity e,, as shown in Figure 4.19. The

cylinder axis coincides with the z-axis and is infinite in extent in this direction. It is

illuminated by a plane wave given by (4.28) incident at an angle 0 = 7r/2

Ei = EoeJko(x cos ¢o + y sin ¢o) (4.48)

where

Eo = Eo[sina(-_,sin¢o + _sin¢o) - _cosa cos ¢o]

To solve for the scattered field,we Introduce the equivalent polarization current

density (see(3.23))

jko.
J = "_-(_ - l)Z T, (4.49)

within the cylinder,where E T isthe totalfieldgiven by

E r = Z i + E s = ZcJ, (4.50)
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in which

Zo (4.51)
Zc- jko(e,- 1)

The governing system of integral equations is now obtained by substituting for the

scattered field in (4.50). For an arbitrary polarization of incidence we have

El(p) = Zc(p)J(p)+ jkoZo f,, J(p')" f'(p;p')ds' (4.52)

where F is now given by

10 2 ) 1 0 2
(1 + k2 O9X2 k 2 09XC_y

02 1

f' = "k1"-Oy Ox (1 + k--._ Oy.--_ ) 0

0 0 1

Go(p; p') (4.53)

and

G_(p;p') = _jH?)(kolP- P'I) (4.54)

Following the same procedure discussed earlier in connection with the plate prob-

lem, we may write

where

M-IN-I

J(x,y) = _ E J,..-6ma(x,y) (4.55)
mffiO n=O

(4.56)

(4.57)

and Ct denotes the expansion function in the Ldirection.

The two-dimensional continuous Fourier transform of G_ is given by (Appendix

B)

1 (4.58)
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However, as noted earlier, the use of (4.58) in the CGFFT solution of (4.52) will

result in aliasing errors. An additional difficulty will also arise because of the ring

singularity of (4.58) occuring when k=2 + k_ = k 2. The inherent approximation in

the implementation of the inverse FFT that the transform be constant over each cell

is obviously not valid for those cells coinciding with the ring singularity. This can

cause substantial errors and often leads to the failure of the discrete system as an

acceptable representation of the continuous one.

To correct both of the above sources of error, the procedure described earlier

can be employed here as well. That is, the original continuous integrals are first

discretized before proceeding with their evaluation via the discrete Fourier transform.

The new discrete system of equations is expressed as

EI_j= ZciiJi#+ k_o _._.ij. j_,, (4.59)
_r_n

where

(=¢_ ° I
0 0 C _

(4.60)

which should be compared with (4.15) and (4.16). Similarly, the non-trivial entries

of A are now given by

_= 1 02 teL = (1+;2 _

1 O_ t_7 - k2a::ay ..

(_y_ 1 0 2 tk2oOx_ ..

H0_2)(x,y; x',y')¢_(x ' x_,_ yl _ y,)d.s'

Ho(2)(z, x' "''z' y' yn)ds'y; ,y)_y_, -x_, -

H52)(x, x' "" "x' y' y,)ds'Y; ,Y )q_=l, - z,_, -

1 0 2 t y' y,)ds'(15' = (1 + fo2 0-_x2) ,_,, H(o')(z,y;z',y')¢,(z '- x,,_, -

Cih" = t H{°')G(z'Y;x"Y')eh*(z'- z,,,y'- yn)ds'
nln

(4.61)
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which may be considered as the 'cylindrical counterparts' to (4.17) since a,,, here

denotes the incremental surface element corresponding to the mnth cylindrical cell

on the target. Again, these expressions are evaluated at (x, y) = (xi, yj). Applying

the convolution theorem to (4.59) yields the final form of the system of equations

koZo DFT -1{_. ,J} (4.62)
Eo = Z_jJ_j + --_

where

/ )
ko- D. -D.D v 0

1
= k o - D v 0i "_o -D,D= a a

0 0 I

and D_ and D_ are given by (4.21)-(4.22).

transform of the sequence

(4.63)

In the above, _ is the discrete Fourier

_,,m = fo,,,, H(a)(kov _+ Y2) d8 (4.64)

This integral can be evaluated numerically except when (m = n) which corresponds

to the self-cell term. When (rn = n) we must resort to an analytical evaluation

similar to (4.26) as [36]:

1 [lrkroH_2)(kro)_ 2j] (4.65)
_00 ----- 2"k

with r0 as given in (4.27).

To illustrate the accuracy of the above formulation, the bistatic scattering from an

infinitely long triangular cylinder is shown in Figure 4.20. The cylinder is perfectly

conducting and as seen, our result agrees very well with a corresponding direct

solution provided in [53].
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Figure 4.20: Scattering from a conducting triangular cylinder illuminated by an E-

polarized plane wave. (a) Geometry. (b) Comparison of bistatic echo

widths obtained from the CGDFT method (--) and the direct method

(. • e) [53].
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4.4 Summary

Two formulations for a conjugate gradient solution of the scattering by plates

of arbitrary shapes were presented. One of the formulations (CGFT) employed the

sampled (truncated) continuous transform of the Green's function for the evaluation

of the convolution integrals. The other (CGDFT) employed finite duration discrete

Fourier transforms for the evaluation of the same integrals. As with the strip probIem

studied in the previous chapter, the latter method was found to provide an accurate

simulation of the plate scattering by eliminating aliasing errors (other than those

due to under-sampling). It was also found to be substantially more efficient than the

former method. Furthermore, it was noted that the convergence of the solution is

substantially faster for plates of non-zero resistivity and this is attributed to the less

singular behavior of the edge currents.

The CGDFT method was also applied to the problem of scattering by dielectric

and conducting cylinders of arbitrary cross sections and a degree of accuracy and

efficiency similar to the plate problem was observed.



CHAPTER V

GENERALIZED IMPEDANCE BOUNDARY

CONDITIONS

5.1 Introduction

Generalized Impedance Boundary Conditions (GIBC) are higher order bound-

ary conditions which involve derivatives of the fields beyond the first. They have

been found to be more effective than the traditional first order (standard) conditions

(SIBC) in modeling thick dielectric coatings and layers. The GIBCs offer several ad-

vantages in both asymptotic and numerical analysis of electromagnetic problems. For

example, in the case of high frequency analysis, they allow an accurate replacement

of a coating on a layer with a sheet boundary condition amenable to a Wiener-Hopf

analysis [14, 54], or some function theoretic approach [55]. In numerical analysis, the

profile of a coating can be replaced by a simple boundary condition on the surface of

the coating. This eliminates the need for introducing unknown polarization currents

within the volume of the coating or material layer, thus leading to a more efficient

solution from the numerical standpoint.

A convenient form of these conditions is expressed in terms of the normal deriva-

tives of the field components

116
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-0

(5.1)

arn m 0

C-jko)m 0rim
ram0

I
where the subscript n denotes the normal component to the surface and am and a,_

are constants specific to the material and geometrical properties of the structure.

These constants are chosen so that the application of the boundary conditions will

reproduce the desired scattering behavior of the surface or coating layer under con-

sideration. They can be derived by employing a suitable expansion of the coating's

Fresnel reflection coefficient and by matching the constants of the expansion to those

of the compatible conditions implied by the GIBC (5.1). Since for a given problem,

the electric and magnetic fields may not be specified independently, the coefficients

I
a._ and a,_ axe related by the relation [13]

which is a form of duality condition. The integer M in (5.1) is the order of the

conditions. For example, when M = M' = 1, we have a first order condition

1 cgE_ _ cgH_

E, jkorl On =0 , H_ jko On -0 (5.3)

The above first order condition can be shown to be equivalent to the standard

impedance boundary condition (SIBC), also known as the Leontovich boundary con-

t Idition [56]-[58], provided 77 = ao/a, = alia ° is identifie,, as the normalized surface

impedance of the sheet. The SIBC is often used for simulating material coating on

conducting bodies and in this case the normalized surface impedance 17 is given by

a0 R
rl = -- = j-- tan(Rkot) (5.4)
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where t is the coating thickness and R = _ is the index of refraction. The validity

of this SIBC has been examined by several authors [57], [59]-[61] and in general it

holds when

IRI > 1 (5.5)

and

19mRlkot :_ 1 (5.6)

The first condition ensures that within the medium, the field behaves essentially

as a plane wave propagating in the direction of the inward normal to the coating.

The second condition, on the other hand, imposes the requirement that the inward

traveling field suffers enough attenuation so that no outward traveling waves exit at

the interface due to reflection. Also, for inhomogeneous materials, the SIBC remains

valid if the lateral variations of the impedance in the medium are slow, that is

[_-_7,/1I_:_1 (5.7)

where V denotes gradient in coordinates transverse to the normal.

Inherently, the SIBC does not permit modeling of polarization currents which are

normal to the layer and is thus most suited for near normal incidences. However, by

increasing the order of the condition, it is possible to allow accurate simulations of

fairly thick layers and unlike the SIBC, the accuracy of the higher order conditions

improves as the incidence angle approaches grazing.

A third order GIBC derived recently [62] for the simulation of high contrast

dielectric coatings is given by (5.1) with M = 3 and

[ao = (R-_R) tan(Rkot)-tan\2_, j
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r ( kot
tan

L

and

_ - _ i __/J

[a'o = (R--_R) l+tan(Rkot)tan_2R] j

[ (k'qla'1 = j#, tan(Rkot)- tan \-_-ff ]j

as - 2R \2R}-k°t -

• [tan(lCkot)- tan (kot_

[, jkot#, 1 +tan(Rkot)tank2R] jaz = 2R

The GIBCs are usually applied at the top layer of the surface under study. How-

ever, in some applications it is desirable to apply the conditions at another plane

of reference. This is convenient for a coating on a ground plane where one may be

interested in invoking the image theory. In such cases the original coefficients a,,

must be replaced by (Appendix C)

(-jkot)"
A,, = _.w am-. , m = 0,..., M (5.10)

n_-0
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where t denotes the transferdistance.

5.2 Two-dimensional Impedance Inserts

In the two-dimensional case, the impedance insertis assumed to be infinitein

length with no fieldvariationsalong the z-direction("..@_.d= 0). The insertisassumed
0z

to satisfya generalizedimpedance boundary condition at itssurface.This may serve

as a model of a partiallycoated conducting plane or a material filledgroove whose

scatteringbehavior under plane wave illuminationisof interest(Figure 5.1).

Introducing the equivalentmagnetic current density over the insertwe have

M = E x fi : (5.11)

M =-Ez

and by imposing the continuity of the tangential field components an integral equa-

tion for the current density can be obtained and solved numerically.

In the following, we will derive integral equations for the equivalent current den-

sity based on a third order generalized boundary condition (M = 3). The two

principal polarizations are treated separately.

5.2.1 H-Polarization

The incident fields are assumed to be of the form

H i = _e jk*(=¢°*_*+_*) (5.12)

E i - Zo(_sin ¢o -._cos ¢o) ej_*(_°+v_*) (5.13)

and the firstof the conditions (5.1)isrelevantin thiscase. For a thirdorder condition

we write

3 am 0 Ev
(-jko),,, oy,,,

_ 0

fn_O
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or equivalently,

"_ °2 -_ jko_ 2 o_ao k2 _'y2 E¢ + + = 0 (5.14)

In order to derive an integral equation on the basis of (5.14), it is desirable to

work with transverse derivatives. This allows for a convenient application of the

Fourier transform to solve the resultingintegralequation. To do so, we note from

the divergence relation that

and from the wave equation

V. E = O, OE v _ c3E= (5.15)
Oy Ox

(V 2+&o _)E - 0, o_y----T=- ko2+_ Z v (5.16)

Introducing these into (5.14) along with (5.11), we have

[(102)] 1[l+F2 l+--_-_z 2 E_+ FI+F3 I+ 1 02 0

where

=--, g = 1,2,3 (5.18)
ao

and E_ is the component of the total field normal to the coating. It can be expressed

as the sum of the geometrical optics field in the absence of the sheet (short-circuited)

and the scattered field in its presence

E,=E_°+E;=E',+E;+E_ (5.19)

Since the tangential electric field vanishes over the conducting ground plane, the

reflected field is givenby

El,= E_= -ZocoS¢ogk'_'_°, y=0 (5.20)
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Also, the scattered field can be expressed as as

l f_,_122Mz(x')_'_H(o x'l)dx _
• 2)(kol z_'/__

E_ =_
(5.21)

where the factor of two has been introduced in accordance with the image theory.

Mz(x')H_(kolx- x'l)dx'

Substituting these into (5.17) yields

1

ko2 J-,_12

(5.22)

- z°_°s¢°_°'¢°'_° + 77ooF, + F_ 1+ k_o_ M,(.) = 0

To eliminate the x derivative, we integrate both sides with respect to x and obtain

_ _1 --g_'i_2 Mz(_)(1 + F2sin 2 ¢o) Zoe jk°_¢°'4'* - F1 + F3 1 +

which is the desired integral equation in Mz.

(5.23)

5.2.2 E-Polarization

The incident fields in this case are of the form

E i = _e jk*(=c°_*+_i*_*) (5.24)

H i = -(_sin ¢o - ffsin ¢o)Yo¢ jko(zcoj_o+v_an_*) (5.25)

and the appropriate boundary condition is given by the second relation in (5.1) with

M=3

a'° k2o_y2 Hv + _, j ko + j k3o_y2 0y _
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Again, using the divergence relation and the wave equation and following steps sim-

ilar to those taken for H-polarization, we obtain

F; -4-F_ 1 + k.-_oOx--.-5 H= + 1 -4- F_ 1 +--_x 2 YoM= = 0 (5.27)

in which the definition of F_ is analogous to that given for Ft (see (5.18)) and

H= = H_ ° + g_-" H_ + H: + g_ (5.28)

Imposing the condition on the tangential electric field, we find that

H i = H_ = -I:o sin ¢oe _k°_¢°'_° , y = 0 (5.29)

and write the scattered magnetic field as

1

Substituting these back into (5.27) yields the integral equation

(F/+F_sin'¢o) sin¢oeik°*¢°'*°= 7 1+ N 1+ k-:oOx----5 M=(z)

(5.31)

+ [ F_+F]'( 1 +/_ O-_alO2)Jk°('4- 1 + k-__21o=)S,,,'2M=(x')Hf°2)(k°lx-x'l)dx'/2

to be solved for Mz.

5.2.3 Specialization to SIBC

As mentioned earlier in this chapter, the SIBC formulation has been traditionally

applied to coated conducting bodies as well as dielectric filled metal-backed cavities.

The above integral equations can be readily reduced to those corresponding to the

SIBC formulation by setting Ft = F/ = 0, t = 2, 3 in accordance with conditions

M,(x')H(o2)(kolx- x'l)dx' (5.32)

(5.1). Doing so yields

• 1.Zrl .. "-4k°[,,12
Zoe 'h°'¢°_*° -" _---M,(z) +

J-ta/2
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for H-polarization and

sin ¢oe jk°_¢° = Mx(z) + T 1 + ----1 0 _ ) [,./2 Mx(x,)n{o_)(kolx _ x'l) dz'k_gi2 J-_/2

(5.33)

for E-polarization where -1 _ Fz = 1/F_ = al/ao is identified as the normalized
T/

surface admittance of the insert.

5.2.4 CGFFT Formulation

The integral equations (5.23) and (5.31) are amenable to a solution via the

CGFFT method. To put them into a suitable form, we first discretize the magnetic

current density using the piecewise constant basis functions and follow an analysis

similar to that presented in Section 3.3.4 in connection with the scattering from a

strip. The integral equations are then put into the form

[1 + F2(x) sin s ¢o] Zo ejk'_¢°''_° =

1-_ F_(x)M,(x) + F3(x) DFT -_ {(k_ - D_)Mx

and

+ DFT-' {M,_f} + _-_oF2(x)DFT -' {(k_ - D.2)._@} (5.34)

[F_Cx)+ F_Cx)sin_¢o] sin ¢oejk°x¢_'*° =

g(z)+ DFT-' {(k_- D:).Mx_'} + _4o4 DFT -I {(ko2 - D_)2_r._ "}

(5.35)
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where the spatial dependences of the F and F' coefficients are expressed explicitly

to allow for slow lateral variations in the electrical properties of the sheet and "_

is the discrete transform of the train To,, defined in (3.85). It is noted that the

spatial derivatives are carried out relatively easily in the transform domain as was

the case in the strip problem. A CGFFT implementation of (5.34) and (5.35) is a

straightforward task.

5.3 Three-Dimensional Impedance Inserts

In the previous section, we presented an implementation of a third order GIBC

for scattering by a two-dimensional impedance insert simulating an infinite groove

recessed in and/or a coating on a ground plane. Here we present a corresponding

implementation for the three-dimensional case.

5.3.1 The Integral Equations

Consider the geometry shown in Fig. 2 illuminatedby a harmonic plane wave

where ki isgiven by (4.30)

A

H i - Hoe -jk°(k''r) (5.36)

E i - ZoH i x _:i (5.37)

_:i = --[sin0o(_ cos ¢o + _ sin¢o) + _ cos 0o]

ko is the free space wave number, and Zo - 1/Yo is the free space intrinsic impedance.

Also,

Ho,_ "- Yo(sin a cos 0o cos ¢o % cos a sin ¢o)

Hov = Yo (sin a cos 0o sin ¢o - cos a cos ¢o)

ttoz = -Yo sin a sin 0o

(5.38)
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and

Eo_ - cos a cos 0o cos ¢o - sin a sin ¢o

Eo_ = cos a cos 8o sin _o + sin a cos ¢o

Eoz = -- cos a sin 0o

(5.39)

in which a represents the polarization angle of the incident field (when a = 0 then

H i -- 0, corresponding to H-polarization, and when a - _r/2 then E_ - 0, corre-

sponding to E-polarization incidence).

As before, the application of the conditions (5.1) over the surface of the impedance

sheet requires the introduction of a magnetic current density vector M(x, y) as de-

fined in (5.11) with both transverse components present. A surface integral equation

for M can then be derived by following a procedure similar to that discussed for the

two-dimensional analysis. Before doing so, however, it is again instructive to rewrite

the boundary conditions in terms of the tangential derivation. This is expected to

directly yield a symmetric set of equations with respect to Mz and M v. From [13]

we find that conditions (5.1) are equivalent to (M = 2)

1 QOE, 1..._Q_7 OH,
E. = -PZoHy+_o _+ jkoP,_O Oy

where

' Ht__.OaE, i OH,
Ey = PZoH_. + jko Oy jko P''° Oz

(5.40)

and analogous expressions hold for the primed quantities P' and Q'. To derive the

a2 + ao
P = (5.41)

Q1

Q_ a_2 (5.42)
al
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integral equation, we invoke (5.11) (note the new coordinate system)

M=Ex_

and rewrite the conditions (5.40) as

1 ZoH_4- 1 QOE_ 1 Q' OH:My- j'k,, "_x 4- jCofi-P 'Z" _y

1 QOE_° 1 Q' OH2o
=Z°H_°-jkoP 8x jk,,PP 'Z° Oy

1M - Zog; 1 Q OE" 1 Q' ,, OH:
P = jkoP Oy -t-jko.-p--_,_o.--_x

(5.43)

= ZoH_° + 1 Q OE? °

jkoP Oy

1 Q' _ OH, aO

j ko-FF z°

where we have also made use of the definitions

E = E i+E'+E °=E a°+E °

H = H_+H'+H'=Ha°+H °

(5.44)

Again, the superscript GO specifies the geometrical optics fields in the absence of the

sheet and the superscript s specifies the scattered field in its presence. By imposing

the boundary conditions on the tangential components of the electric field over the

perfect conductor, we find that

E" = (-Eo=_.- Eo_ + Eo,_')e-_k°f_''r)

A

H" = ( Ho=_ + Ho_- Hoz_)e -jk°(k''')

(5.45)
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where

_, = - [sinOo(_cos¢o+ _sin¢o)- _cos0o] (5.46)

is the unit propagation vector for the reflected fields. The scattered magnetic field

may be expressed in terms of the equivalent magnetic current density as

H" = -jkoYo ffsF(r; r'). [2M(r')]ds' (5.47)

where S denotes integration over the surface of the sheet and

_ = (I + _o2VV) Gv(r; r') (5.48)

is the free space dyadic Green's function with the factor of two accounting for the

presence of the ground plane. More explicitly,

2j_ 02 M,, "x' " ]H:= _ f_ i_(x',_') q + ,_ j_--:zr_/ao(r;r')a,'oxoyj

(5.49)

( o,)]Hi = 2jYo Oa M "x' '" k2o+ Go(r;r')ds'
-_o M=( x" Y') O-_Y + "( ' y ) _y2

(5.50)

and

H*_ = - k--7 £ Mx(x',y') + M_(x',y') Go(r;r')ds'

Rewriting the last equation and making use of the identity (Appendix D)

a(r; r') = -26(_- _')

it follows (from distribution theory) that

H: = X-7 M_(_,y) + M,(x,_)

(5.51)

(5.52)

(5.53)
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To formulate an integral equation from (5.43), we also need to express the normal

componc:.t of the scattered electric field E_ in terms of M. We have

E,--2fs[M_(x',y')-_y-M_(x',y')-_x]Go(r;r')ds' (5.54)

Substituting now for the field quantities in (5.43) yields

1

7 M-

+ _ofS [j ,yj(k_+'" 5)+M_(x',Y')o-_oy]Go(r;r')ds'

1 Qfs[M_(x', ' 0jko P Y )_y - M_(z" Y')_x] ff--yO°(r; r')ds'

+ 2k_ PP'Oz M_(z,y) + Mv(x,y )

= [ZoHo.+QsinOosin¢oEo,]exp{jko[sinOo(xCOS¢o+ysin¢o)]}

(5.55)

1

"_-f M_(x, y)

J [M.(x', O' (k_ 5)]Go(r;r')ds'+ _o Jfs Y')'O'_ + M.(x',y') +

1Q ,c9
+ jkoP_[M.(x',Y)-_y-M,'x',y')_-_]_---_Go(r;r')ds '

+ 2k2o PP'Oy M_(x,y) + Mv(x,y )
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[ + ]= ZoHoy--_sinOocOS¢oEo: exp{jko[sinOo(xcOS¢o+ysin¢o)]}

(5.56)

which is a coupled pair of integral equations to be solved for M_ and M_.

5.3.2 Specialization to SIBC

The firstorder (standard) impedance boundary conditionisobtained from (5.41)-

(5.42)by lettinga2 = a_ --*0 eliminatingthe corresponding terms in (5.40)

E_ = -PZoH v

(5.57)

E v = PZoH=

where P - ao/al - TI°may he regarded as the normalized surfaceimpedance of the

sheet.Expressing these conditionsin vector form, we may write

E - (_. E) _ = t/.Zo_ x H (5.58)

In view of (5.57), equations (5.55) and (5.56) reduce to the simpler pair of integral

equations

J [Mz(x,y)_-_ M_ ( x , V ) + -_o /s ( k 2o+
02 ) 02

My(x',y')w--w-_ ]Go(r;r')ds'= ZoH_
+ axayj

(5.59)

J [M "x' " 02 (++,) =zo.:
(5.60)

As expected when _/, --_ oo, indicating an open gap in a conducting screen, these

equations further reduce to the dual of those pertaining to a perfectly conducting

plate already discussed in Chapter 4.
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5.3.3 CGFFT Formulation

In order to put the integral equations (5.55) and (5.56) into a form suitable for a

CGFFT, we expand M(z, y) in piecewise constant basis functions. In particular, we

set

Nz-1 Ny-1

M(x,y) = _ _ MmP(x-xp)P(y-yq) (5.61)
p----0 q----0

where xp = pAx + -_, Yq = qAv + __k2and Mpq - _M_q + _Mv_ q represent the

unknown coefficients of the expansion function. Employing this expansion, we may

rewrite the surface integrals as

Jfs M(r'). to(r; r')ds' =

Nz-1N,-a

p=0 q----0

(5.62)

m

where _ij is given by (4.16). Applying the discreteFourier transform, the above

further reduces to

fs M(r'). to(r; r')ds' = DFT-1{_.. _} (5.63)

where -_. denotes the discrete Fourier transform of _ and is given by (3.109). Em-

ploying this result in (5.55) and (5.56), yields

Fl(x,y)M=(:r,y)

2

+ _oF2(x,y)DFT-' {(._f.D_- MyD=Dy)_}

F3DFT-' {.M_D: + M.vD_D,}
ko
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and

= 2[ZoHo_ + F2(x,y)sinOosin¢oEo,]exp{jko[sinOo(zcos¢o + ysin¢o)]}

(5.64)

V,(x,u)M,(x,U)

+

-4-

_.vr-' {[-_.D.D,+_,(ko'-D:)]_}

_ko F2(x, y)DFT -1 { (--_D, Dv + MvD 2) _}

_DFT -1 {M_D_Du + MvD_}

= 2[ZoHo_- Fz(x,y)sinOocos¢oEo,]exp{jko[sinOo(xcoS¢o + ysin ¢o)1}

(5.65)

which are applicablefor a solutionvia the CGDFT method. In the above,

1 Q

F,=_ F,=_

and the spatial dependence of the F coefficients axe again shown to indicate the

presence of a slow planar variation in the electrical properties of the sheet.

5.4 Summary

In this chapter, we introduced the generalized impedance boundary conditions

and studied their incorporation in the general CGFFT formulation. The formulation
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was applied to the simulation of what could be referred to as generahzed impedance

inserts. In particular, a third order GIBC was apphed to the simulation of two-

dimensional impedance inserts while a second order condition was considered in

the three-dimensional case. In both cases, the first order (SIBC) formulation was

obtained by setting the appropriate higher order coefficients to zero.

The combined GIBC/CGFFT formulations discussed here can be used in the

study of partially coated conducting planes as well as cavity-backed apertures re-

cessed in a ground plane. These structures may be adequately represented by

impedance inserts with appropriately chosen coefficients. This will be the subject of

Part Two of the Thesis.
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Part II

SCATTERING BY CAVITY

STRUCTURES



CHAPTER VI

SCATTERING BY MATERIAL FILLED
GROOVES

6.1 Introduction

The study of electromagnetic scattering from filled cavities recessed in ground

planes is important in modeling the radar response to various man-made structures.

In this chapter, an exact full-wave formulation is first developed for the rectangu-

lax groove problem based on the Generalized Network Theory [63]. This theory has

been applied to a number of aperture and slot problems in the past [64, 65]. In this

method the external fields are expressed in terms of the scattering integral while the

fields internal to the dielectric medium are given in terms of appropriate waveguide

modes specific to the particular problem. An integral equation is then set up by

employing the equivalence principle and enforcing continuity of the electromagnetic

fields across the interface. This method, although rigorous, is computationally in-

tensive and is limited in application to structures whose electrical size is relatively

small. Moreover, due to the nature of the formulation, a solution is possible only

for canonical geometries for which the orthogonal wave functions associated with the

cavity can be found.

Next, the formulation is specialized to narrow grooves. Analytical expressions for

136
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the equivalent magnetic current distribution over the aperture of narrow grooves are

derived based on a quasi-static approximation of the pertinent integral equations.

The solutions exhibit the expected edge behavior at the terminations and are used

to find closed form expressions for the echo width of the groove.

Finally, an approximate formulation based on the GIBCs is presented and shown

to be amenable to the CGFFT method of solution having an order O(N) memory

requirement. In contrast, the exact integral equation does not lend itself to such a so-

lution and must be solved by a matrix inversion approach having an O(N 2) memory

requirement. It is found, unfortunately, that the GIBC formulation yields satisfac-

tory results only when the contributions of the groove's terminations are negligible.

This is because the GIBCs were derived for a coating without terminations and must

be supplemented by more accurate conditions in the vicinity of such material discon-

tinuities. A hybrid procedure is, therefore, introduced that combines the exact and

GIBC formulations. The proposed procedure utilizes the solution obtained from the

GIBC/CGFFT in a region sufficiently away from the terminations and then finds the

near-edge currents based on the exact formulation. Despite an increase in the com-

plexity of the formulation, the memory requirement of the hybrid method remains

essentially of the order O(N) and can be used when the material constituency of the

filling does not allow the application of neither SIBC nor GIBCs of higher order.

6.2 Full-Wave Formulation

Consider the infinitely long groove of width w, and depth d illuminated by the

plane wave

Hi( or E i) = _e j}°(xe°s÷°+_*°) (6.1)
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Figure 6.1: Geometry of a filled rectangular groove.

for H- (or E-) polarization, where ko = 2,r/A is the free space wave number and _o

is the angle of incidence (Figure 6.1). The groove is _sumed to be filled with a

material of index of refraction R - _x/rd_p_. A standard approach to formulate the

scattered field by the groove is to employ the equivalence principle [66]. Accordingly,

the aperture is closed by a perfect conductor and the equivalent magnetic current

(Figure 6.2)

M=Ex_=Ex_ (6.2)

is introduced over the aperture at y -- 0 +. The scattered fields outside the cavity are

those radiated by the equivalent magnetic current and consistent with the continuity

of the tangential electric field, the field inside the cavity is that radiated by -M

placed at y -- 0- across the aperture. To find the equivalent magnetic current we

must also enforce the continuity of the tangential magnetic field across the aperture.

We have

x [H'(M)+ H"] - _ x Hb(M ') (6.3)
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where H _ is the total field on the ground plane in the absence of the groove (aperture

short-circuited), H a represents the tangential scattered field above the aperture and

H b is the total field below the aperture. To construct an integral equation in M,

H _ and H b must be expressed in terms of the Green's function corresponding to

each region. The external scattered field (attributed to M) can be expressed as the

surface integral

fwl2

Ha(r) = -jkoYo ]-w12 2M(x') • r(x; x')dx'
(6.4)

Ex = Ez=0 ; y=-d (6.9)

E,, = Ez = O ; x = :t:w/2 (6.10)

potentials both satisfying the scalar wave equation

+ N-iy,+

subject to the boundary conditions

TEzwaveguide modes as

E b = E TM -}- E TE "- --jkbZb(z_ TM) -- V × (Z_ TE)

H b _- H TM + H TE -" V X (Z_ TM) -- jkbYb(_ TE)

1[t(z;z')- _-] (1 + k--_oOm---_)_+ _ Ho 2)(kolx- x'l) (6.5)

and a factor of two was introduced in (6.4) based on the image theory to account for

the presence of the ground plane.

The internal fields (those attributed to M') can be written in terms of the TMzand

(6.6)

(6.7)

where kb = _ko is the wave number inside the cavity and Zb -- 1/Yb is the intrin-

sic impedance of the filling material. The functions _TM and @TF_ are the wave

dyadic Green's function

(6.8)

where Yo is the intrinsic admittance of the free space and F is the two dimensional
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on the cavity walls, and

M' = E x _' y = 0 (6.11)

over the aperture.

Below, we consider the two principal polarizations separately.

6.2.1 H-polarization

For H-polarization (TEzcase) we have

H_" = Hi a¢ + H_ = 2e/k_=_° (6.12)

which is the geometrical optics field in the absence of the groove.

component of the external scattered field is given by

H_(Mz)= k2Y° fjl: M.(x')H(o')(ko,x- x',)dx '

while the internal fields are given by (6.6) and (6.7) and in this case we have

The tangential

(6.13)

E b= E TE = -V × (_TE)__ ___,._._TE_r_ Jr" _._TE (6.14)

Hb = HTE -- --j lCbYb("_¢TE ) (6.15)

In order to find useful expressions for E b and H b, we need to solve for the wave

potential _TE. To this end, @rE can be expressed as an infinite sum of orthogonal

modes

OO

_TE = _ Ap¢_ (6.16)
p'=o

where ¢_ axe the waveguide modes all satisfying the wave equation (6.8) and Ap are

coefficients to be found. Substituting for _TE in (6.14), and using (6.9)-(6.10), the
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¥

(Co,go)

H i = Z Y0 eJk°(x_OS,o+ysin,o)

Equivalence Principle: M=E×n

perfectly conducting

Continuity of Tangential E M'=Exn'= -Exn= -M

:
plane vacated by

perfect conductor

(Image Theory)

Figure 6.2: Application of the equivalence principle to aperture problems.
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boundary conditions to be imposed on the cavitywallsare

Oztp = 0 y=-d (6.17)

0 h
_,/,,, = o • = +w12 (6.18)

and a set of eigenfunctions which satisfy these and the wave equation is

¢_ = cos[k,(y+ d)]cos[-E(x - w/2)] (6.19)

where kp satisfies the separation parameter equation

k_= k__ (E2_) (6.20)

We now seek to find the coefficientsA_. Upon enforcing the condition (6.11)on the

aperture (y = 0), we findthat

E k,A, sm(k,d)cosI-E(x - _/2)] = -M" = M. (6.21)
P

Multiplying both sidesby cos [?(x - w/2)] and integratingover the aperture yields

y]_ kpAp sin(kpd) "'J_ 2 COS

= f'/_ M.(,) cos[_(x - wl2)]d,
d-w/2

and by invoking the orthogonality relation

L_/2 { 211+ _o] P- q_'Dc°s[?(x-wl2)]c°s[?(x-wl2)]dx= 0 p_q

we find

2
F :_M.(x)cos[--_ (x - w/2)]dxAp

(6.22)

(6.23)

(6.24)
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where 5_ is the Kronecker delta defined in (3.117). Thus, the function _TE in

(6.16) is completely defined and the magnetic field in the internal region may now

be expressed explicitly as

OO 2
cos[k_Cy+ t)] cos[_(x- w/2)]

Hz(x,y) = --jkbYb __, [1 + 6po]wkpsin(k_,d)
p=0

Mz( ')cos w/2)]d,'
./-_/2

which at y - 0 gives the tangential field just below the aperture

oo 2 _'(z
H,(x,o) = -jk, r_ _ [1+ 6,_]_k,tan(k,e) cos[_- -w/2)]

p----O

(6.2s)

f'/_ M,(x')cos[-_(_'- wl2)]d_'
" J-,_/2

This is equivalent to expressing the tangential internal fields as

Hb(-M,) = --jkbYb F: '2 M,(x')Gh(x; x')dx'
la

where the Green's function is given by (see (6.26))

0o 2 pr pr
Oh(x,z') = _ e_wkp tan(k_d) cos [..._(x- w/2)] cOS [w (X'- Wl2)]

p=O

and

(6.26)

(6.27)

(6.28)

ep= 1+6_,

Substituting (6.12), (6.13), and (6.27) into (6.3) we obtain

koff_.'_ M.(x,)H_2)(kol_ _ z'l)dz

(6.29)

O0

+ __, cosf_w(z_w/2)] [,_12 Mz(z')cos pr , w/2)ldx'
p=o _pwwp J-_/2 [_(z -

(6.30)
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where ribp are the normalized H-mode impedances of the cavity given by

.k,
TIhp = 3_bZb tan( kpd) (6.31)

and Zb = _/r_-/¢, is the normalized intrinsic impedance of the internal region. Equa-

tion (6.30) is an exact integral equation to be solved for Mz(x).

6.2.2 E-polarization

For E-polarization (TMzcase), we have

H_" = -2Yo sin ¢oe j_'_'°

and the corresponding tangential scattered fields are given by

f°( 'I-I:(M_) = k 1 + _ _'z _' J-,/2 M=(=')HP(koI= - x'l)dx'

and

Hb (_ M_: ) = _j Yb /2kbF /2 M'(x')G+(x;

To find the cavity Green's function G e we note that

E b --_ E TM = --j]C,bZb(Z'_ TM)

H b - HTM

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

Following steps similar to those taken for the H-polarization case, the wave po-

tential _TM is expressed as

OO

@TM _ _ Bpg'_ (6.37)
p---O

and the boundary conditions to be satisfied on the walls are

¢_, -- 0 y--d (6.38)

¢_ -- 0 x = =t=w/2 (6.39)
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and

aperture, we have
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-- sin[k_(y + d)] sin [_(x - w/2)]¢;

is defined in (6.20). Enforcing now the boundary condition

(6.40)

(6.11) on the

_, k_,Bpsin(kpd)sin [_(x - w/2)] = M= (6.41)
p

To find B_, we multiply both sides by sin [?(x - w/2)] and integrate over the extent

of the aperture. As before, by employing the orthogonality relation

we find

(6.43)2Yb fw/2 M=(m)sin [P_ (x _ w/2)]d z
Bp --- jkbwsin(kpd) J-_12

The magnetic field in the internal region may now be expressed explicitly as

H=(x,y) = 3_ _ cos[k,(y + t)]sin[_(x - w/2)]w sin ( kpd)

• [_12 M=(x,)sintP_(x,_ w/2)ldx'
J-_/2

which upon setting y = 0 gives the tangential aperture field

•Yb o0 2kp px"

H_(z,O) = _T_ __,,_b_qwtan(k_d) sin[_(x-w/2)]

(6.44)

[,_/2 Mx(x') sin pr"J-_/2 [-_(z' - wl2)Idz'

Comparing this with (6.34) we deduce that

oo 2kp _ .._Ge(x;z') = - _-" wtan(kpd) sin[--_(x - w/2)]sin[ (x' - w[2)]
p=l

(6.45)

(6.46)
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Substituting (6.32)-(6.34) and (6.46) into (6.3) yields the integral equation

sin ¢oeSkx ¢._ $o = "4"k°(1 + k--_olOx'''_i)')/''/'Mx(z')H(_)(k°]x-x'')dx,J_,_/2

where

OO

+ _ sin [_(x - _/2)]
pffil Wr]eP

(6.47)

. kb

,e_=3_z, tan(k_d)

are the normalized E-mode impedances of the cavity.

integral equation to be solved for Mz(x).

Clearly, (6.30) and (6.47) are both invalid when

(6.48)

Equation (6.47) is an exact

tan(kpd) = 0 (6.49)

and this occurs only when the material filling the groove is lossless. To be specific,

the modal solutions fail if there exist integers p and q such that 1

(__P)2+ (q)_= (_)_ p,q _ z (6.50)
w a A

This difficulty in the evaluation of the internal Green's functions may be circum-

vented by assuming a small loss in the material. We also note that for the proper

behavior of the field in the internal region, we must have

_e{k,} > 0 (6.51)

_i'm{kp}_<0 (6.52)

when usi:_: (6.20).

IThe formulation for the H-polarization cMe also fail, ff k_ = 0 in addition to (6.49). This is
equivalent to p/w = q/d when p, q E I.
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Upon a solution of the integral equations, the scattering echo widths of the groove

may be calculated from (3.44) and (3.45) with ZoK. and K. replaced by 2YoMz and

2Mz, respectively, and the polarization subscripts • and h interchanged in accordance

with the image theory and Babinet's principle [19]. Thus,

I/_'/2M.(x,)eJk,,_'C-,dx'l 2ah = ko Yoj_,_12 (6.53)

6.2.3

I [,,,12ae "- ko sin ¢ J-,o/2

Numerical Solution

Mx( x,)ej_¢ co, _dx,I 2 (6.54)

The integral equations derived in the previous subsections may be solved numer-

ically by the moment method and will serve as the reference for the validation of the

results obtained from alternative formulations presented in the rest of this chapter.

Considering the H-polarization case, the integral equation (6.30) may be dis-

cretized by expanding Mz(z) as

N-1

Mz(z) = _ M.(x,,)P(z- z,_),
A

x,, = nA + _- (6.55)
n---0

where P(z) denotes piecewise constant basis function. Substituting for the current

expansion in (6.30) and applying point matching, the admittance elements are given

by

Y,_,, = T,_,, + l'I.,,, (6.56)

where T,_,, axe elements attributed to the external tangential fields and are given by

(3.85), while l'I.,,, are those attributed to the internal tangential fields and are given

by

p=0 P PT/hP
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A similar discretization can be carried out for E-polarization.

Figure 6.3 shows a sample calculation of the backscattering echo width for an

empty groove based on the above formulation. The groove is assumed to be 10A

long and the usual physical optics approximation (1.26) was invoked to relate the

two-dimensional echo width given by (6.53) or (6.54) to the corresponding three-

dimensional radar cross section. The results are in good agreement with a corre-

sponding finite element method (FEM) solution [67].

6.3 Partially Loaded Grooves

We now consider the partially loaded groove shown in Figure 6.4. If the filling

material is electrically dense, we may consider the equivalent problem of a homoge-

neously filled groove of depth d terminated with a floor consisting of an impedance

sheet. In this case, the boundary conditions on the cavity walls and the aperture

of the groove remain the same as (6.10) and (6.11), while the floor satisfies the

impedance boundary condition (5.58)

E - (_- E)_ = _tZo_ x H

where r/t is the normalized surface impedance of the floor.

replaces (6.9), and in scalar form

(6.58)

The above condition

E_= rltZoHz y=-d (6.59)

Ez = -rltZoH_ y = -d (6.60)

Following an analysis similar to that of the previous section, new integral equa-

tions can be derived for the solution, ae equivalent magnetic current density over

the aperture of the groove. In particular, employing the equivalence principle, the
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Figure6.3: Comparison of the backscattering patterns of a long two-dimensional

groove obtained from a finite element solution (FEM) [67] and the

method of moments (this study). The groove is assumed to be 10A long.

(20 samples/A with 60 waveguide modes).
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Figure 6.4: Scattering from a groove partially loaded with electrically dense material.

(a) Geometry. (b) Equivalent problem using an impedance sheet.
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tangential magnetic fields in the external and internal regions are expressed in terms

of the pertinent Green's functions and used to enforce the continuity of the fields

across the aperture. In this case, the expressions for the external fields remain un-

changed and are given by (6.13) and (6.33) for H- and E-polarizations, respectively.

As for the internal fields, the Green's functions G h and G _ must be modified to

accommodate the new boundary condition on the groove's floor.

Considering the H-polarization case, once again the wave potential _TE is ex-

pressed in terms of an infinite sum of orthogonal modes as in (6.16).

boundary conditions to be satisfied by these modes are

Och= _tZo(jkbY,¢_) y=-d
0y p

o¢.
Oz p = 0 x = +w/2

The new

(6.61)

(6.62)

A set of eigenfunctions satisfying the second condition along with the wave equation

is

(6.63)

where Rh is the reflection coefficient of the floor and k r is defined in (6.20). Enforcing

the second condition yields

jkp(1+ Rh) = Ct /  kb(1 --Rh) (6.64)

which upon solvingfor Rh gives

kp

_lt - -_Zb
Rh = (6.65)

kp

Upon imposing the equivalent current condition (6.11) on the aperture and solving

for the new set of coefficients Ap, we find

2j [,_12 M,(x)cos[Prw (z _ w/2l]dx (6.66)A_ = epwkt,(ejkpd + Rae-J_,d) J-w/2
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and, therefore, the new Green's function is given by

2j I_=o_wk_[_J_,_+_j co,[-_(_- w/2)]cos[_(_,- _/2)]

(6.67)

where ep is given by (6.29). Employing the above results, the integral equation to be

satisfied by the aperture current for the H-polarization case is

= ,-/nM'(z')H(°2)(k°tz - z'l)dx

+ _ cos [_(z - w/2)] f,,,n , [_'z' w/2)]d_' (6.6S)
,=0 _,w,_, ]_./2M.(. )cos-_t -

where r/_p is the normalized equivalent surface impedance of the groove looking into

the aperture, given by

kp
Yt + j Zb tan kpd

' _ (6.69)
TIh v -- z, kb

jTIt- E- tan k_d + zb
_p

For the E-polarization case, the boundary conditions to be enforced in the internal

region are

¢;= ,,Zo(jkXb_.¢;) y=-d (6.70)

¢;= 0 ,= ±w/2 (6.71)

suggesting the following form for the eigenfunctions ¢_

where R_ is the reflection coefficient of the floor given by

kb

tit- T-Zb
Re -"

kb

L' t Jr -_p Z b

(6.72)

(6.73)
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Solving for the mode amplitudes Bp, we find

-2Yb f,_/2 M,(x)sin[Prw (X_w/2)ldx
Bp = jWkb(eJkpd + Ree_Jkpd ) J-w�2

and the new Green's function is given by

oo

c,(x,, ) = _-2k_ [e_,_- Roe-_"_
p=, w [eJk,d+ R_e -jkpd

(6.74)

sin [==_(x - w/2)] sin [-_(x' - w/2)]

(6.75)

Employing the above results, the integral equation for the E-polarization case is

obtained as

sin¢oeJk_¢O_¢o = ko4 (1 1 02 ) ,w/2+ k]ox--zJ__/_M'(x')g!2_(k°l_- _'l)d_'

+ _ sin [_(z - w/2)] 12 M=(x')sin [ (x' - w/2)ldx'
p=a wT/'_p /2

(6.76)

where r/_,p is the normalized surface impedance of the groove looking into the aperture,

given by

• kb
tit + 3 ZbZ-- tan kpd

_7_p= Zb
• kp

3rlt-_b tan kpd + Zb

(6.77)

It is noted that (6.68) and (6.76) are identical to (6.30) and (6.47) with the only

modification that the normalized mode impedances r/hp and r/,p are replaced by the

normalized equivalent impedances r/_p and r/'cp looking into the aperture• It is also

noted that if the groove is terminated by a perfect conductor, r/t = 0 and

?

r/hp = T/hp , r/'_p = r/_

and the formulation reduces to that of the homogeneously filled rectangular groove.
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6.4 Dominant-Mode (Quasi-Static) Formulation

For large apertures, a numerical approach is the only alternative to the solu-

tion of (6.30) and (6.47). However, in many cases the characterization of narrow

width grooves is of practical interest. With this motivation the narrow groove has

been modelled as an impedance insert in an effort to simplify the analysis [68]. Un-

fortunately, the resulting quasi-static integral equations were not amenable to an

analytical solution but, nevertheless, it was possible to derive accurate empirical

echo width formulae through the examination of numerical data. This was essen-

tially done without a direct (analytical) evaluation of the current on the impedance

insert.

In this section we consider the solution of the integral equations for a narrow

rectangular groove without invoking the impedance approximation used in [68]. It

is shown that by retaining the dominant mode supported by the rectangular groove,

the resulting quasi-static integral equations are comparable to those associated with

the perfectly conducting narrow strip considered in Section (3.3.2). They are there-

fore amenable to analytic solution yielding the exact field distribution or equivalent

currents across the groove's aperture. The derived currents exhibit the an edge be-

havior similar to that associated with the currents of a perfectly conducting half

plane or strip. On the other hand, the corresponding current behavior based on

the (numerical) impedance simulation of the groove is quite different. However the

resulting echo widths are comparable.

The derived analytical expressions for the equivalent aperture currents are of

potential importance in constructing suitable models for long and narrow three-

dimensional apertures. _ _.,:o, unlike the echo width formulae given in [68], t? _se
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derived here are valid for all groove depths and material fillings. In this sections,

the exact integral equations derived for a two-dimensional rectangular groove will

be simplified to the case of a narrow width groove and solved for the equivalent

magnetic currents across the aperture. The accuracy of the currents is examined by

a comparison with the numerical data. Simple echo width expressions axe also given

for the principal polarizations which are treated separately.

6.4.1 H-polarization

When kw ,¢:. 1, the Green's function Gh(z; x') can be substantially simplified by

retaining the first term of the sum, corresponding to the lowest order mode in the

cavity. The integral equation (6.30) then reduces to

ZoeJk,_," _ 1 [,,/2 M.(x')dz' + ko [,,/2 M,(z,)H{,2)(kolz _ z'l)dz'
- 2w,7-'-"hs-w/2 T s-,_/2

(6.78)

where

TIh = j _ tan( kbd)
(6.79)

is the normalized impedance of the dominant mode which can be also identified as

the normalized impedance at the surface of a grounded slab of thickness d. It is

interesting to note that if the first integral in the right hand side of (6.78) is replaced

by wM,(x), then (6.78) reduces to

M,(x) ko [,./2 M,(z,)H_2)(kol x _ x'l)dz'
Z°e_k_=_'* - _ + "T J-,,,/2

which is the integral equation based on the impedance boundary condition

(6.80)

E_(:r.) = rlhZoH_(x ) (6.81)
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applied over the extent of the aperture (see equation (5.32)). On the other hand, the

integral equation (6.78) is based on the relation

2_[_/2 E.(_')d_' = WZoH,(_)
W J-w�2

(6.82)

This observation reveals the inherent local nature of the impedance boundary con-

dition and its underlying assumption that the current is more likely to be slowly

varying. Not surprisingly, (6.80) predicts a rather smooth behavior of the current

distribution near the edges of the groove at z = +w/2. In contrast, a numerical

solution of (6.78) gives the usual singular form of M,(x) at the same locations. An-

other interesting property of the "boundary condition" (6.82) is the independence of

the left hand member from x. This property will be exploited later to arrive at a

closed-form solution to the integral equation.

To further simplify (6.78) for kow _ 1, we introduce the small argument expan-

sion for the Hankel function as we did for the narrow strip,

H(o2)(z) _- l - jg

where In 3' is Euler's constant. Substituting this into (6.78) and retaining only terms

to O(kw) we have

/__/2 M.(x') In tx x'ldx'- = 3 ---'koZo_11]'2

+ _ _ J_

Further, by introducing the same change of variables as (3.51)

2x 2x'
_=--, _'=--

I/} W

(6.84) becomes

f_M,(C)t_l_-_'ld¢=s_Zo+ jk_v, In - -_-j/,

(6.84)

(6.85)
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The above singular integral equation can be inverted by noticing that the right hand

side of (6.86) is independent of _, and upon invoking the identity (3.54)

(l_x_)-'/21nl:r,-x'ldz'--rcln2 z E [-1,1]
1

we find

M.(_) = Zoxh(1- _2)-,/2 = Zo x_,

11( 1
(6.87)

where Xh is a complex constant given by

X.h =
4j

(6.88)

It is noted that the aperture magnetic current (6.87) has a functional form exactly

similar to that of the electric current of a narrow strip (3.56). In fact, when Yh "-* oo

corresponding to an open slot, we find that

4j (6.89)

n,,.-.o, koW n +3_

which is analogous to the E-polarization result obtained for the narrow strip (3.58).

This result is, of course, expected based on Babinet's principle [19, 66].

6.4.2 E-polarization

A simila_ derivation can be carried out for E-polarization. By retaining the lowest

order mode in the groove, (6.47) becomes

, .,,,.f,o/,Mx(x,)cos_rX'dx,
sin ¢oe jk_cm#° = _ COS(-'_) J-,o12 w

+-_ 1 + f¢2o_x 2 J-,,,/2 M.Cx')H{o2)(kolx- x'l)dx'
(6.90)
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where

j kb, _/'_"tan(kld )
rte = t:1 V ¢'

is the normalized wave impedance of the lowest order mode with

(6.91)

Next, by introducing the small argument expansion of the Hankel function and the

change of variables defined in (6.85) we obtain

1 cos (2') f-: Mz(_')cos (2 _') d_'sin_bo - 2rte

j d 2 a
f-i Mx(_') ha [_ - _'[d_' (6.93)

d_ 2

where we have retained only terms to O(kw). An approximate solution for M_ can

now be obtained by satisfying (6.93) at _ "" 0. We have

d2 aa- [ _ 11 ][1 M.(¢)haI_- Cld_'=i,_ko,_sin¢o- f_, M.(¢)cos(_¢)d¢
d,_""7

(6.94)

whose right hand side is independent of _. Thus, by invoking the identity (3.55)

d_.__2 E [-1,11
dx 2 J_ 1

the above integral equation is inverted and M= may be expressed as

where ,:, is given by

M=(_) = X._ = X. 1 -

Xe

jkow sir ¢o

(6.95)

(6.96)
jkowJl(r[2)

1+



159

and J1 denotes the first order Bessel function.

made use of the identity [69]

It is noted that ye is generally inductive for kw ,¢: 1, and thus the derived

expression for Xe is nonsingular within the expected validity range of (6.95). Again,

as _e -'* w corresponding to an open gap,

In arriving at this result, we also

lim Xh -- jkow sin ¢o (6.98)
_ e -.t, oO

which is analogous to the H-polarization result obtained for the narrow strip (3.59).

The far zone scattered field at a point (p, ¢) in cylindrical coordinates can be

computed from (6.53)-(6.54). Upon approximating the exponential e jko::'_'¢ with

unity, we have

and

1[ /2 12ah = ko Yo J-,.l_ M,(z')dz' = k°}TXhl"I_'w Is (6.99)

_'. = kolSm¢]_,,,/2M,(z')d_'= ko -_--x. sin ¢ (6.100)

which in the backscattering direction, yield

2x'A
= (6.101)

In + -/z +

_'A_2 sin¢]
ae = • 2 (6.102)

2 11 + 0.5696_w I

Before a detailed examination of the the above quasi-static results, we remark

that the same analysis presented above is applicable to a narrow groove whose floor
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Figure 6.5: Geometries of some gaps and crack of practical interest.

satisfies an impedance boundary condition. In this case the mode impedances r/h and

_Teare replaced by the corresponding normalized equivalent impedances r/_ and r/'e

looking into the aperture. This allows an analysis of partially filled narrow grooves

as well as narrow cracks of simple shapes (Figure 6.5). For such geometries, a quasi-

static or empirical estimate of the impedance may be used [68].

The derived formulae for the gap echo width and aperture currents are based on

low frequency approximations to the exact integrals. They are thus expected to be

valid for small groove widths and it is, therefore, of interest to examine their accuracy

limitations as the width of the groove increases. Also, of interest is a comparison

of the analytical echo width formulae derived here with the corresponding empirical

ones given in [68].

Figure 6.6 presents a comparison of the derived H-polarization current distribu-
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tion (6.87)versus that obtained from a numerical solutionof the full-waveintegral

equation (6.80).Similar comparisons are alsogiven in Figure 6.7 for E-polarization.

In both cases _bo- _r/2and for thisincidence the expressions (6.87)and (6.95)are

in good agreement with the exact data (although only amplitude comparisons are

shown, good agreement was observed forthe phase as well).This holds independent

of _bofor small w. As the groove width increases,however, the exact current isto

an increasing extent a function of _boand as noted in [68]the angular dependence

is noticeable for zv __ 0.15A. Since the quasi-staticH-polarization current (6.87)

is independent of _o, itis then applicable up to this value of w. Nevertheless, we

have found that for normal incidence,(6.87)isquite accurate up to w _ 0.25A and

itsaccuracy improves for filledgrooves. For E-polarization,the derived quasi-static

current solutionisan explicitfunction of @o and, therefore,remains accurate for all

angles of incidenceup to w _ 0.25A.

Comparisons ofthe echo width formulae with numerical data are given in Figures

6.8 - 6.11 for the H-polarizationand Figures 6.12 - 6.13 for the E-polarizationcase,

respectively.These resultscorrespond to the backscattering computations at normal

incidence (_ = _bo - _r/2). It is observed that the quasi-staticformulae remain

accurate for allgroove depths provided tv is kept within itsvaliditybounds. The

empirical formulae given in [68]were generally found to agree with these results,

except near the resonance regionsfor the H-polarizationwhere the empirical formula

fails.This isillustratedin Figure 6.11 for an empty groove whose resonant depth is

d - 0.234A when w - 0.1A. Also, in contrast to H-polarization,the E-polarization

echo width does not display any resonant characteristicsfor small w since there is

no travelingmode in the cavity.In fact,for w < 0.2A, the E-polarizationecho width

of an empty groove isindependent of depth for d > 0.1A.



162

Finally, we remark that the above solutions are of potential utility in the analysis

of long three-dimensional (finite) grooves. For example, Figure 6.14 shows the radar

cross section from a 2.5A long groove whose width and depth are A/4. In this case,

the quasi-static result was obtained from (1.26) based on the physical optics ap-

proximation. Good agreement with the full-wave three-dimensional moment method

solution (Chapter 7) is observed.
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Figure 6.6: H-polarization equivalent surface magnetic currents for a groove of width
tv = 0.1A and depth d - 0.2A; Comparison of analytical and numerical

data.
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0.2A as a function of width for three differentmaterial fillings.
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Figure 6.9: H-polarization normal incidence echo width for an empty groove as a

function of depth for three different widths (to = 0.05A, 0.1A, and 0.2A).
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Figure 6.12: E-polarization normal incidence echo widths for an empty groove as a

function of width (d = 0.2)_); Comparison of the quasi-static, empirical

[68], and numerical solutions.
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6.5 GIB C Formulation

In the previous sections, we presented a rigorous full-wave formulation for com-

puting the scattering by a filled rectangular groove in a ground plane. This was

further approximated to the case of a narrow groove based on a quasi-static anal-

ysis of the pertinent integral equations. In this section, we present another class

of approximate formulations for the general analysis of grooves which make use of

generalized impedance boundary conditions.

As mentioned in Chapter 5, the material filled groove may be simulated by a

two-dimensional impedance insert. Indeed, we have already encountered the SIBC

formulation for the groove in equation (6.80). In this section, we examine the accu-

racy of this boundary condition as well as those of higher orders.

Consider first the SIBC. In this case, the integral equations (5.32) and (5.33) are

applicable and by setting Ft -- F[ = 0, t - 2, 3 in (5.34) and (5.35), we obtain

and

sin¢oe jk°'_°'_°
1 1

- M=(x) + _ DFT
2F{(z)

(6.103)

(6.104)

which are subsequently solved by the CGFFT method.

Figure 6.15 shows the amplitude and phase of the equivalent magnetic current

density for a half-wavelength deep (in freespace),two wavelengths wide rectangular

groove filledwith a lossy material of high index of refraction. In this case, the

conditions (5.5)-(5.6)are satisfied

[l_1= 7.7 [_mR[kod = 5.5
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and the agreement with the full-wave solution is very good. In contrast, when the

groove is fired with a relatively low contrast material, SIBC is no longer applicable

as the validity conditions of SIBC are violated (Figure 6.16).

Consider the same groove, now simulated by an impedance sheet (insert) satis-

fying a third order boundary condition. In this case, the integral equations (5.23)

and (5.31) are applicable and the CGFFT implementation is given by (5.34)-(5.35).

From Figure 6.17, it is seen that the GIBC solution agrees reasonably well with the

exact one except near the groove terminations.

Generally, the current distribution based on the proposed third-order GIBC is

not of acceptable accuracy when within 0.25)_ of the groove's terminations. However,

because it is in good agreement with the exact current distribution elsewhere, one

approach in retaining the memory advantage associated with the application of the

GIBCs is to combine the exact and GIBC formulations. This is discussed in the next

section.

6.6 Hybrid Exact-GIBC Formulation

Based on the above discussion, a procedure for combining the exact and GIBC

formulations is to feed the currents predicted by the GIBC integral equation (5.23)-

(5.31) away from the edges into the exact integral equation (6.30)-(6.47). The last

can then be solved for the remaining currents in the vicinity of the groove termi-

nations. This only requires the inversion of a small matrix and hence the memory

demand is essentially unaffected.

To demonstrate this hybrid approach, let us consider the H-polarization and a

similar formulation applies to the other polarization as well. Suppose that M_(z)

denotes the current computed via the GIBC integral equation (5.23) and we choose
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d = 0.5A; e,. = 12.5 - j2.5, _, = 4.5 - jl.2, and _bo = 30 °. Comparison

of the full-wave (m) and SIBC (- - -) results.
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to approximate the true aperture current as

(6.105)

where M_ denotes the unknown currents near the edges of the groove. To compute

M_ we substitute (6.105) into (6.30) and this yields

2eJk°_°+ J-,,,/2+=A Mff(z') z') -

-- _ t-_r/2+ xA
- J-,,,I, Mc(x ') [jkbYbGb(z,x')- h Y  H(o )(kolx- d_'

') - --- Jw/2--zA 2 0 _0 X

(6.106)

Assuming that M_(x) has already been computed via a CGFFT solution of (5.23),

the entire left-hand side of (6.106) is known and thus, for xz_ < 0.25, a 4 × 4 or a

6 × 6 square admittance matrix is required for the solution of M,v(x). In general,

continuity of the current density must be imposed at the transition regions between

M_(x) and M_ (z), and this can be accomplished through a simple averaging.

Figure 6.18 shows the results obtained for the aperture current density of the

groove considered before. Clearly, the proposed hybrid solution (HYBRID-3) pro-

vides the necessary correction near the terminations where the GIBC solution fails.

Bistatic and backscattering patterns corresponding to the same groove are given in

Figure 6.19. It is observed from these patterns that the S1BC solution is substan-

tially in error for angles near grazing. The same holds for the GIBC since, as is well

known, the contribution of the edge currents is a dominating factor in the compu-

tation of the echo width. Notably, the patterns predicted by the hybrid formulation

are always in good agreement with the full-wave moment method solution.
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6.7 Tapered Grooves

The GIBC formulation can be directly applied to the scattering from tapered

grooves, provided the constant coefficients associated by the employed GIBC are

allowed to vary. This, clearly, avoids a need to compute the Green's function or to

use a more sophisticated technique such as the finite element method (FEM) [70].

The condition on the slow variation of the impedance for the SIBC is given by (5.7) in

addition to (5.5) and (5.6). However, it is possible to simulate more rapid variations

by using a higher order GIBC. Consider, for example, the non-rectangular groove

shown in Figure 6.20. In this case, the SIBC is inadequate in modelling the groove

while a direct application of the third order GIBC formulation is sufficient to yield

accurate results.

6.8 Summary

The problem of scattering from two-dimensional rectangular grooves was studied

using a full-wave analysis. The analysis is applicable to grooves terminated with

perfect or imperfect surfaces. This formulation was specialized to the case of elec-

tricaUy narrow grooves by considering the dominant waveguide modes in the groove

and employing the finite Hilbert transform theory based on a quasi-static approxima-

tion of the resulting integral equations. Analytical expressions were derived for the

equivalent magnetic current distribution over the aperture of narrow grooves. The

solutions were found to exhibit the familiar edge behavior observed in the case of

narrow strips and slits. Using the derived current distributions, closed form expres-

sions were given for the echo width of the narrow groove and these were compared

with numerical data. Their accuracy was examined as a function of width, depth

and material filling and were found to be in good agreement with the echo width
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data based on full-wave solution for all angles of incidence, provided w < 0.15_ for

H-polarization and w < 0.255 for E-polarization regardless of the groove's depth.

The closed form solutions obtained here were found to be of potential use in the

study of the long and narrow grooves and could significantly simplify their analyses.

Furthermore, the scattering behavior of the groove was simulated by the impedance

boundary conditions. Both first order (SIBC) and third order GIBC formulations

were studied. The formulations based on these boundary conditions were found easier

to implement than the full-wave formulation. Also, unlike the exact integral equa-

tions, they were amenable to a CGFFT implementation. For high-contrast material

fillings, the SIBC was found adequate in modeling the groove. An analytical compar-

ison of the integral equation based on a SIBC simulation with that from a full-wave

formulation, revealed a well-known hmitation of the SIBC formulation. That is, the

SIBC integral equation generates an average of the actual current distribution. By

resorting, though, to a third order GIBC the correct current behavior was reasonably

predicted away from any abrupt terminations of the groove. The predicted current

based on the GIBC simulation was in general incorrect near the edges and to correct

this defficiency, a hybrid approach was proposed. Specifically, the currents computed

via the GIBC formulation away from the rectangular groove terminations were em-

ployed in the exact integral equation to generate a small matrix for the currents

in the vicinity of the terminations. This was referred to as the hybrid exact-GIBC

formulation and was found to yield a reasonably good prediction of the scattering

by filled rectangular grooves.

Finally, when the groove terminations are not abrupt, the hybrid formulation is

not required and a direct application of the GIBC formulation may be sufficient.



CHAPTER VII

SCATTERING BY OPEN RECTANGULAR

CAVITIES RECESSED IN GROUND PLANES

7.1 Introduction

The characterizationof apertures in a ground plane isof considerableimportance

in radar cross section (RCS) and electromagnetic pulse (EMP) studies. Indeed, a

large body of work existsfor the analysisof two-dimensional slitsin a thick ground

plane [71]-[76]or cavity-backed apertures [77]-[79].Extensions of these procedures to

three dimensional characterizationsare possible,but so far thishas only been done

for high frequency techniques. Numerical solutionsfor three dimensional apertures

have been limitedto scatteringand transmission by openings in a thin ground plane

[50],[80]-[82]primarily due to the excessivecomputational demands and complexity

of the solution. The only exception to this isthe use of the mode-matching tech-

nique for the analysis of rectangular [67]and spherical[83]cavity-backed apertures.

Although in principleexact,the mode-matching approach leads to an infinitesystem

of equations in addition to being cumbersome. A need, therefore,existsto develop

numerical solutionsfor cavitybacked apertures. Such solutionscan provide a charac-

terizationof thisstructure and could serve as a referencefor validatingnew solution

algorithms.

183



184

In this chapter we consider the scattering by a rectangular cavity-backed aperture.

The solution technique employed in the analysis is the full-wave moment method ap-

proach considered in the two-dimensional applications of Chapter 6. A fundamental

aspect of this method is to employ the aperture fields as the equivalent sources of

the fields interior and exterior to the cavity. The complete integral representation of

the fields within the cavity makes use of the modal Green's function whereas that

external to the cavity makes use of the free space dyadic Green's function. An inte-

gral equation for the aperture fields is then constructed by enforcing tangential field

continuity across the aperture. Except for being tedious, the entire solution process

is straightforward and in an effort to maintain the level of complexity to a minimum,

a pulse-basis moment method solution of the integral equation is first discussed. The

more useful roof-top basis is also presented. As can be expected, the roof-top basis

formulation leads to a more efficient numerical solution at the expense of additional

complexity. In either case, the admittance elements associated with the external

fields are identical to the impedance elements for a perfectly conducting plate. How-

ever, the major difference in computational efficiency among the two formulations

lies in the evaluation of the admittance elements associated with the internal fields.

These are given in terms of a double sum series whose convergence is substantially

improved when higher order basis functions are employed.

In the following sections we first develop the complete field representations in the

interior and exterior regions of the cavity. The integral equation is then formulated

by requiring continuity of the tangential magnetic field across the aperture and dis-

cretized using pulse and roof-top basis functions. The evaluation of the admittance

elements is discussed in some detail since these are of crucial importance in the over-

all accuracy and efficiency of the solution. An important aspect of this chapter is
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Figure 7.1: Geometry of an open cavity recessed in a ground plane.

the presentation of a number of scattering patterns some of which are validated with

data obtained via an alternative solution method.

7.2 Full-Wave Formulation

Consider the aperture shown in Figure 7.1 illuminated by a harmonic plane wave

given by (5.36) and (5.37). This represents a two-media problem with the aperture

dividing the space into two regions, one external to the cavity (z > 0) and another in-

ternal to it (-c < z < 0). To formulate the fields scattered by the cavity, an analysis

similar to the two-dimensional case is carried out based on the equivalence princi-

ple. Accordingly, the aperture is closed by a perfect conductor and the equivalent

magnetic current

M=Exfi=E × _=_Ev-_E_ (7.1)

is placed on the aperture at z = 0 +. The radiation of this current represents the

scattered field in the external region and by demanding continuity of the tangential

electric field, it follows that equivalent sources for the internal fields are the magnetic
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currents

M' = E x fi' = E x -_'= -M (7.2)

placed across and just below the aperture at z = 0-. It remains to also enforce

continuity of the tangential magnetic field across the aperture and this will provide

the required condition for determining the magnetic currents. By denoting the fields

in the external region as (E _, H °) and those in the internal region as (E b, Hb), we

have

x [H'(M) + H ''] = _ x Hb(M'), z = 0 (7.3)

where H i° represents the incident magnetic field in the absence of the aperture. Upon

substitution for H a and H b, (7.3) then yields an integral equation for the equivalent

magnetic currents.

The external scattered field can be expressed as the surface integral

H_(r) = -jkoYo fs 2M(r')- f'(r; r')ds' (7.4)

where S denotes the surface of the aperture, r is the free space dyadic Green's

function

I'(r; r') = (] + _-_o_VV) Gp(r; r')

presence. By expanding the :F in cartesian coordinates, (7.4) can be written more

explicitly as given by

r /x,( °2]-_ y' _ Go(r; r')ds' (7.5)H: = ko fs [ _t ,Y ) k2o+-_z 2 + My(x', )OxOy

z[ o, (2j_ M,(_',¢)O-;-N + M,(_',¢) ko_+ _i ao(_;¢)d¢ (7.6)Hi = ko

Also, a factor of two was introduced in (7.4) to account for the ground plane's
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The internal fields can be written in terms of the TMzand TEzwaveguide modes.

We have

Eb -- ETM + ETE = --jkbZb [I +-_bVV.] ('Zff_TM) -- V × (zffJTE ) (7.7)

Hb = HTM + HTF-' = V × (_ffJTM) -- jkbYb [I +-_bVV.] (_ff2TE ) (7.8)

where as before, kb = Rko is the wave number in the internal region and Zb = 1/:}_

is the intrinsic impedance of that region. The functions _TM and @rE are the wave

potentials both satisfying the wave equation

( 020202)_+ 0y---z+ _-_ + k2 _=0 (7.9)

subject to the boundary conditions

E==E_=0, z=-c (7.10)

E_=E,-0, y-0 and y=b (7.11)

E v=E_=0, z=0 and x=a (7.12)

on the cavity walls. Referring to Figure 7.1, we have

_TM _. E E A,_,sin x sin y cos[kx(z + c)] (7.13)
m, ml _----1

and

• _ = _ ]E B_ncos x cos y sin[k,(z+ c)l
mffiO n=O

excluding m = n = 0 (7.14)

where A,_ and B,n,_ are constants to be determined and k_ satisfies the separation

parameter equation

(7.15)
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Observing the restriction on the mode propagation constant 7 - jk_ for the proper

field behavior, we demand that

Re{k_} > 0 (7.16)

_m{kz} < 0 (7.17)

implying that

_/(_;)_(_)_ _/(_)_(_)_-j + - k_ , kb < +

_- (7)_-(_)_, _>i(_)_÷(_)_
when kb is real. Substituting (7.13)-(7.14) into (7.7) we obtain

cos(-_-x) sin(n-_-_y)sin[k..(z +c)] (7.1s)

and

sin("_z) cos(bY)sin[k,_,,(z +c)]

sin(-_z) cos(bY)COS[k,,,_(z +c)]

(7.19)

(7.20)

(7.21)
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The mode coefficients A,.. and B._. can be expressed in terms of the equivalent

current M by enforcing the boundary conditions (7.1) and (7.2)

Ex=M_=-M_, z=O

E_ = -M" = Mx, z = 0

(7.22)

(7.23)

and by invoking mode orthogonality we find

A11tln --" k,,,,absin(k,,,,,c) { (-_-) 2+

where

'
and

(

J 1 m-0

2 m>l

The above expressions for the internal cavity fields are invalid when

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

k,_. tan ( k,,,.c) = 0 (7.29)

which may occur if the cavity is filled with lossless material.

solution fails if there exist integers m, n, and p such that

Hence, the modal

(7.30)
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where R is the index of refraction of the material filling the cavity. As mentioned

before in connection with the two-dimensional grooves, this situation may be handled

simply by introducing a small loss in the material.

The desired system of integral equations is now obtained based on the continu-

ity of the aperture magnetic fields (7.3), upon substitution for the pertinent field

quantities.

7.2.1 Reduction to the Two-Dimensional Case

Before we consider the numerical solution of the above integral equations, we

consider the special case of the long cavity. We show that the above formulation

reduces to that of the two-dimensional case studied in Chapter 5 when the cavity is

taken to be infinite along one aperture dimension. Although this analysis is quite

general in its application, we limit our attention to the H-polarization case here. In

particular, as b ---, o<_, we may neglect the contribution of the transverse x-component

of the equivalent magnetic current density in favor of the dominant longitudinal y-

0

component. Also, the problem is invariant in the y-direction and we set _yy = 0.

Hence, from (7.6) and (7.21) we obtain

lim H2 = -2jkoYo [,_12 f_
b"* oo " J - w / 2 ¢o

and

M,( z ', y')G,( x, y; x', f )dx'df

hm H_ =_2jkbyb [1 _.,=o_=o ¢,,,k_ ,_,,]

(7.31)

Using the identity

(7.32)

f 1oocp(ko¢'J + y,)dy= g o2 (kolXl) (7.33)



191

equation (7.31) can be rewritten as

"r_nH_ = -k'--Y2_f=/2 Mdx,)H?)Ckolx _ x'l)d-'
J-w�2

which is compatible with the two-dimensional scattering integrM (6.13).

more, substituting for I_ n and setting k,_n =km _ _/k_- (_)2 in (7.32) yields

where

(7.34)

Further-

7.2.2

we find that

sin(nlry) sin(n_'y') = 6(y - y')
n----1

Su = sm(TY ) ,n(-_--y ) dy'= 6(y - y')dy' = 1 (7.38)

2

Numerical Solution via Galerkin's Method

In accordance with the method of moments, the integral equation to be solved

for M is (see (7.3))

= - fs H_'(_,y) •w(x, u)ds , z--O

(7.39)

where H_ = _ x H _, H_ = _ x H b, and H_* = _ x H ia with H * and H b as given by

(7.5)-(7.6) and (7.20)-(7.21), respectively and W(z,y) is a weighting function. To

(7.37)

the order of summation and integration, and noting that [84]

and S_ should equal unity for (7.35) to reduce to the two-dimensional result (6.30).

This can be verified by invoking the distribution theory. Specifically, by interchanging

--jkbYb __, k_ tan(k_d) S'c°s( x)
a rn_O
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discretize (7.39), M is expanded in terms of subdomain basis functions

M(x,y) = __M_.[££_=(x-xp;y-yq)-t-f/_y(x-xv;y-yq) ] (7.40)
P,q

where _ and _ are separable functions of x and y representing the expansion func-

tions in the x and y directions, respectively. Further, Mpq = £M=_q + ._M_q are the

unknown coefficients of the basis functions. In accordance with Galerkin's method

we will choose the weighting functions to be the same as the expansion functions,

i.e.

w(x,y) =

for testing at the point (xl, yj).

_,(x - x,; y - Ys)

(7.41)

Solution with Piecewise Constant Basis Functions

Choosing piecewise constant basis functions, (7.40) becomes

Nf Ny

M(x, y) = _ __,MpqP(x - xp)P(y - yq)
p=l q----I

where xp = pax - A_, yq = qAy - "_2,and

I IxJ< _
P(x) = 2

0 otherwise

1 ly[< _--_
p(y)= 2

0 otherwise

Substituting (7.42) into (7.39) yields the system

r ?
IDC

(7.42)

(7.43)

(7.44)
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where the admittance elements with the superscript a are associated with the external

fields whereas those with the superscript b are associated with the internal fields. The

external admittance elements Y_, Y_ and Y_ are given in terms of the integral

(7.45)

= [,_ KJA, fnA. fqA_ Go(r,r')dy'dx'dydx
J(_--I)A_, J(j--_)"._ J(p--1)"= J(q--X)A_

and its second derivatives. This requires analytical evaluation when ]i - Pl <- 1 and

IJ - ql -< 1 and to do this, we rewrite gijnq as (R -- Ir - r' D

= o q -_ds dsR _,,,_

The first integral has a nonsingular integrand for all i,j,p and q and can, therefore, be

evaluated numerically using, for example, Gaussian integration. The second integral

has a singular integrand when i = p and j = q but can be evaluated analytically to

fs,, fs,_ ds'd..._.._S=R [(x-x')(y-y')2 {(x-x')ln[(y-y')+ R]

yield

+(y - ¢) _. [(x - x') + R]} - (_ - _')(Y- Y')[(_- _') + (y - y')]
4

(7.46)

z'={t,-1)zx_ Iu'=(q-i)_xlo, z=(i-1)ax, 1o=(j-1)zx_

Unfortunately, the derivatives of gljpq do not exist in analytical form. A possible

alternative is to evaluate them discretely using the computed values of gijm, and a

convenient way to do this is to employ the discrete Fourier transform. Proceeding in

this manner, we first define the sample train

Nf_V,

x,j=  g,jp,6(x- ,,)6(y-
p=lq=l

(7.47)
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whose two-dimensional DFT will be denoted by Xi./. Using a central difference scheme

for the derivatives, the DFT of the sample train

e-JkoR ]

x_ = _ _ ox2 _ ds'd_ •6(x - x_)_(_- _q) (7.4S)
p----I q=l ij

with xi and y: kept constant, can be approximated as

Xi: = -D_Xij (7.49)

The admittance matrix elements can then be expressed as

2jYo DFT_ 1 {[ko2 _ D:] :_'i)(r:')_i = ko (7.50)

2st.,J = - k---_- DFT-' {-D_:D_:_Ij} (7.51)

(r:) wi: =- k--:-DEW-' {-D,_D_.,j} (7.52)

= - k-'-'f-DFT-' {[k_- D_] _/_} (7.53)

where DFT-t denotes the inverse discrete Fourier transform. These give the ad-

mittance elements for the matrix row associated with the testing point (x;, yi). The

other row elements can be obtained by a simple rearrangement of this row upon

invoking the symmetry properties of the matrix.

To evaluate the admittance matrix dements associated with the cavity region we

refer to (7.20)-(7.21). Substituting the expansion (7.42) into (7.24)-(7.25) and then

into (7.39) yields

[m_r z _ mr n_r n_r
sin \--.._- ,]sin(-.-_--xi) cos(---_-y,)cos(-.-_-yj)

(7.54)
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ij_l m n

COS

and

{ rr_yr x '_ Tr$_" 7271" 7271"

In these

{ _271" '_ mTl" 117l" n_

sinc 2 (_-_Ax)sinc 2 (MAy)

k=. tan (k=,_c)

C = 2jYo (AzAy) 2
kol_b ab

and e,_ have been defined in (7.28).

It remains to compute the excitation elements (l_)ij and (Iiu)
ij

I i_ "£_,= [jA, H_(x,y,z=O)dydx

i,,¢ _t,x [ja,j Hi(x,y,z = O)dydx.(I;),=2
Integrating, we obtain

i_c'_ = 2HoxeJk*'i*o*(_c"_*+u, mc'.)AzAy
x /ij

given by

(7.55)

(7.56)

(7.57)

(7.58)

(7.59)

(7.60)

(7.61)

(7.62)
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and

(Ii_¢)ij = 2Hoveil'o_°o(_,'x"_,,+2','aa_o)AxAy

(7.63)

"sinc(k°AxsinO°cos¢°)sinc( koAxsinO°sin¢°)2 2

where Hox and Ho_ are given in (5.38).

This completes the derivation of all elements appearing in the system (7.44)

whose solution yields the current densities Mx and M v. Unfortunately, the compu-

tation of the matrix elements Y_x, Y_, Y_ and Y_ requires the evaluation of double

infinite summations which are slowly converging. The asymptotic behaviors of the

1 1
summation terms for Y_x and Y_y are of the form and

n_/n 2 + rn 2 mn_/n z + m:_'

respectively, implying that for fixed n, YxSu and Yu_ have slow convergence whereas

Yxbx and Y_u are strictly non-convergent. As will be seen later, however, for long

and narrow cavities, a finite number of summation terms are sufficient to obtain

acceptable results. Nevertheless, substantial amount of computer time is required

for evaluating the mode sums given in (7.54)-(7.57) making the solution impractical

unless the convergence of the sums is improved. One way to achieve this is by using

roof-top basis functions considered next.

Solution with Pieeewise Linear Basis Functions

The equivalent magnetic current components are now expanded as

P-1 Q

M,:(x,y) = _ __, MxpqTp(x)Pq(y)
p----I q----1

P Q-1

(7.64)

U,,(x, ) = F_. M,.,,P,,(x)T,(y)
p=l q=l
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where

for

T.(_) =

(8 - 1)A_ _< _ _< 8A_

(s+ 1)A_ -- _
8A_ _< _ _< (s + 1)A_ (7.65)

A_

s= 1,2,...,S- 1 (7.66)

and P(¢) is the piecewise constant basis function considered before.

When these are used in (7.39) with the weighting functions the same as the

expansion functions, we obtain a system similar to (7.44). The external admittance

elements are now given by

_2jYofjay fqay /(I÷I)Az T/(z) f(p4-1)_=
(Y£)ijpq -- k o J(j--1)All J(q--1)ay J(i-1)a= J(p--1)A=

(k2o + -_x2 ) Go(r; r')dz'dzdy'dy

(Y_'_')o,q -2jYo f", /(,+'", /('+l)_Td_. ) f,""- ko J0-1)A_ J(q-1)_ T¢(y') J(i-1)_= J(p-x),,,

9 2

_-_Go(r; r')dz'dzdy'dy

(7.68)

(y,,_),,,__ -2jYo,c_+1,,,,,...,fo", ,,,.. /o,+l_,..T,(z,)ko JC_-l>..,,'jtyJ.,_,_l_,,,,f_i_l_,,.,.,0,_l>,,.

9 2

O-ff_Go(r; r')dx'dxdy'dy

(7.69)



198

-2Wo e ritz rp_z

r,(, )jc,O-,)_v Tj(y) JO-,)_

(k2o + _-_) Go(r; r')dx'dxdy'dy

(7.7o)

The calculation of these elements may be simplified by applying integration by

parts and sampling the 'field' integrands at two points [50]. Taking for example the

first integral, we have after integrating by parts

-2jYo

(7.71)

where T" denotes the derivative of To. Performing midpoint integration

for the unprimed integrals by sampling at the two points [(i+I) Az,

(j - ]) Ay] and repeating the process for the other elements yields

Y"=,Jnq' = -JY°k°AxAv ((_ + 3)I(_ + 1,¢)+ I(_,¢)- (_- 3)I(_- 1,()

1

+ _ [Iz(_- 1, ¢) - Iz(¢ + 1,¢)] (7.72)

2 }+ (koAx) _ [I(_ + 1,¢)- 2I(_,¢) + I(_- 1,¢)]

-2jYo

Y_Om = k----f-[-I(_,O+l(¢+1,¢)+I(_,¢-1)-I(_+l,¢-1)] (7.73)

-2jYo

- k--'_ [-I(_,0 + I(¢,C + I) + I(¢- 1,0- I(¢- 1,C + 1)1
,_

yx ijpq

and

(7.74)
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1
+ -_T_.[Is,(_,C--i)-- Iv(_,C + 1)] (7.75)

,,y

2 }+ (koAy)_ [l(_,C + I) - 21(_,C) + I(_,C - I)]

where _ -- i - p, C - J - q and

I( _, C) ._-'=-7_I'_m_dzdy
Y((-½ a(_-½y,= .i_rv _- -ry-

(7.76)

I=(_,C) J(¢-½)Au .,((_½)A,x'4__dzdu (7.77)

= /(¢+½)"_ nf(a+½)a" y e-Jk° _V/'J'_',-,---....axay'II,(_,C)
J(¢-_),,,,J((-)),,_4_-vx_+ y_

(7.7s)

The above integrals ea_a be evaluated using a four term Taylor series expansion and

are given in [50].

The evaluation of the internal elements of the admittance matrix is straightfor-

ward and yields the following expressions

(7.8o)
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.,:(-_,,,:)<o.[-_(,-,/,).,:] (7.81)

_'[-7("-'/_)A']"°07_"")
and

,:o,[-_/,,-l/=/_=]c.o,r.-,,,:,-,.o ,i=lA=] (7.82)

sin ( n_ qAy) sin ( n---_j Ay) •

where r/,,,, and C are given in (7.58) and (7.59). The corresponding excitation ele-

ments are computed as

= 2Ho=eJhoUOo(it'_'_io+(J-il2)Av'_io)AzAy

(7.s3)

( l_¢)ij = 2Ho_eJko.i.Oo((i-1/2)'=¢,_'/'o+J'va.¢o) AxAy

(7.s4)

We observe that the asymptotic behavior of the summation terms in (7.79)-(7.82) is
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now of the form

1

(mn)2_n 2 + m 2

and the double sums are therefore expected to converge rapidly. The required number

of modes for convergence within an acceptable tolerance will, of course, depend on

the geometry and electrical properties of the cavity.

7.2.3 Results and Validation

The implementation task of the presented numerical solution is a tedious one as

is usually the case with most three-dimensional numerical solutions. The validation

of the code also proved challenging because of the scarcity of reference data and

the long execution times. The calculation of mode sums constitutes the major part

of the computer processing time. As noted earlier, for a piecewise constant basis

implementation the mode sums are slowly converging and Figures 7.2 a and 7.2 b

give the convergence of the like-polarized and cross-polarized admittance elements,

respectively, for these basis functions. The double sums were computed using the

scheme discussed in [85] and the shown curves correspond to the element located at

the center of a square 1_ x 1,_ aperture. We observe that the mode sums for the

cross-polarization admittance elements converge rather rapidly. As expected, Y_ of

the self-cell has not converged even after adding 1000 modes in each direction in

the piecewise constant basis solution whereas only 50 modes (in each direction) are

sufficient to reach convergence when using roof-top basis functions as demonstrated

in Figures 7.2 c and 7.2 d. In general, though, for narrow and long cavities only

a few modes need be kept along the narrow dimension and this leads to a much

more rapid convergence since the double sums are essentially reduced to single sums.

In fact, for very narrow cavities, one may only keep the lowest order mode [86,
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87]. This was explored to some extent in Chapter 6. It should be noted, though,

that for long and narrow apertures the pulse basis formulation is preferable to the

roof-top one described here unless the external self-cell admittance elements are

more accurately evaluated (i.e., midpoint integration should be replaced with a more

accurate integration scheme.)

To validate the presented moment method full-wave formulations and associated

computer codes we relied on comparisons with data obtained from a corresponding

finite element-boundary integral (FEM) solution [88]. This was developed in par-

allel with the moment method/modal solution in an effort to avoid cavity shape

restrictions and the long processing time required for filling the MoM matrix. In

the Figures to follow, the RCS pattern is presented for the principal plane cuts of

the cavity-backed aperture. Figure 7.3 presents the two like- and cross-polarization

backscatter RCS patterns for a 1.73)` deep cavity with a - 0.7)` and b = 0.1)`. These

are conical cuts and were generated with the code based on the piecewise constant

basis formulation. They are clearly in good agreement with the FEM data and have

also been found to agree with the only other [67] available calculations that appeared

recently in the literature.

Backscatter curves for a filled cavity are given in Figure 7.4. These were generated

with the code based on the roof-top basis formulation and correspond to a 0.4)` ×

0.4)` cavity backed aperture, 0.25)` deep and filled with homogeneous material having

er -- 2 -j0.5 and pr - 1.2 -j0.1. The principal plane like-polarized RCS patterns

are again in good agreement with FEM data. Additional curves for a long and

narrow 2.5), x 0.25)` cavity are given in Figures 7.5 and 7.6. They are based on the

piecewise constant basis formulation and correspond to a 0.25)` deep cavity, empty or

filled with material having e_ = 7-jl.5 and p, = 1.8-j0.1. Figure 7.5 presents the
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Figure 7.2: Comparison of the mode convergence for a 1A x 1A x 0.25A cavity us-

ing the piecewise constant (a and b) and roof-top (c and d) basis func-

tions. (i,j; p, q) = (5, 5; 5, 5) solid line; (5, 5; 5, 4) chain-dashed; (5, 5; 4, 4)

dashed; (5,5; 1,1) dotted line. M is the number of modes in each direc-
tion.
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like-polarized backscatter RCS patterns for the empty cavity in both principal planes

whereas Figure 7.6 includes the corresponding patterns for the filled cavity. As seen,

the RCS patterns in the principal plane normal to the long side agree with the scaled

two-dimensional RCS data (using the conversion (1.26)), whereas the principal plane

patterns normal to the short side agree with the FEM data. Finally, the scattering

characteristics of a square cavity (1A x 1k x 0.5A) filled with a high contrast material

(e, = 12- j2.5, p_ = 4.5- jl.2) is shown in Figure 7.7. It is noted that for this

particular case, a sampling interval of A/15 and a total of only 50 modes in each

directions were sufficient for the MoM solution to reach the converged solution. This

is, of course, due to the fact that higher order modes are suppressed because of the

high losses in the material filling the cavity.
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Figure 7.3: Comparison of conical (8 = 40 °) backscatter RCS patterns for a 0.7A ×

0.1A x 1.73A empty cavity obtained from the moment method solution

using piecewise constant basis functions and the finite element method

(FEM) [67].
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Figure 7.6: Backscatter R,CS elevation patterns for a 2.5_ x 2.5,_ x 0.25,_ filled cavity

(e, -- 7 -jl.5, #, = 1.8 -j0.1) using piecewise constant basis functions.

(a) _b - _bo - 0 (symbols denote FEM results [88]). (b) _b -- _o - 7r/2

(symbols denote the scaled two-dimensional RCS data).
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Figure 7.7: Backscatter RCS elevation patterns for a 1A x 1A x 0.5A cavity filled with

a high contrast material (e, = 12 -j2.5, p, = 4.5 -jl.2); Comparison

of the MoM solution using piecewise constant basis functions with the

FEM [88].
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7.3 GIB C Formulation

The full-wave formulation presented in the previous sections is applicable only

for the cavities of rectangular shapes and may not be employed for the analysis of

nonrectangular geometries. Furthermore, this formulation is not very efficient when

considering aperture areas larger than 1,_ 2. Therefore, in this section, as in the two-

dimensional case, we present an approximate formulation based on a simulation of

the cavity backed apertures by an impedance insert satisfying impedance boundary

conditions. The analysis of three-dimensional impedance inserts was given in Chapter

5.

Considering first the SIBC, the relevant integral equations are (5.59) and (5.60).

Again, by setting F2 = 0 in (5.64) and (5.65), we have

Fl(z,y)M=(z,y) + _-_DFT -1 ([.M.(k:- D:)- 2_I,D.D_] _}

and

= 2ZoH,xexp{jko[sinOo(XCOSC_o + ysindo)]}

+ 2JDFT-1 {[-.M=D,D_, + .Mv(k2o- D_)] _'_
ko

(7.85)

= 2ZoHo_exp{jko[sinOo(zcos_bo + ysin_o)]}

(7.86)

which may be solved by the CGFFT method.

Figure 7.8 shows a comparison of the full-wave and SIBC solutions for scattering

from the filled 1)_2 square cavity considered earlier. Since the filling material is of



213

high contrast (er = 12- j2.5, p, = 4.5 -jl.2), good agreement is observed between

the two solutions. When the losses in the cavity are not sufficiently high, the SIBC

is not applicable and a higher order GIBC is required. Figure 7.9 shows the results

for a long cavity 2.5_ × 2.5_ × 0.25_ filled by a material of lower loss (er = 7 - jl.5

and/_r = 1.8 - j0.1). The second order GIBC based on equations (5.64) and (5.65)

is seen to yield an improved result for the longitudinal cut considered in this case.

For H-polarization incidence, the magnetic currents do not vanish at x = =i=1.25A

and thus, as noted for two-dimensional cavities, the GIBC simulation would not be

of acceptable accuracy in predicting the currents in the immediate vicinity of the

cavity edges. This is a limitation in the numerical and analytical application of

the GIBC, and stems from their non-uniqueness [89]. As noted in [90], additional

conditions must be imposed at the cavity terminations to supplement the GIBC.

Although the notion of these supplemental conditions is understood, their numerical

implementation is cumbersome and inefficient in the context of the CGFFT solution.

Thus, additional research is required before the GIBC can be employed for simulating

coatings and filled cavities with abrupt terminations. On the other hand, if the cavity

depth on the coating thickness is tapered to zero-as is often the case in practice-the

presented formulation is then directly applicable. Unfortunately, no reference data

are available for tapered three-dimensional coatings and cavities which will permit

validation of the GIBC formulation.

7.4 Summary

A full-wave moment method formulation was presented for computing the scatter-

ing by an aperture formed by a rectangular cavity in a ground plane. In constructing

the integral equations, the equivalence principle was employed to introduce equiva-
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Figure 7.8:Backscatter RCS elevationpatterns for a IA x IA × 0.5A cavityfilledwith

a high contrast material (e¢-- 12- j2.5,/_,--4.5- j1.2);Comparison of

the full-wave(MoM) with the SIBC (CGFFT) solutions.
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Figure 7.9: Comparison of the E-polarization scattering patterns for the long 2.5A x

2.5A x 0.25A fined cavity (e,. - 7 -jl.5, #_ = 1.8 -j0.1) as obtained by

the full-wave and approximate formulations (longitudinal ¢ - 0 ° c_._t).
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lent magnetic currents across the cavity aperture. The fields interior and exterior to

the cavity were then expressed as the radiation of the equivalent magnetic currents

in conjunction with the modal and free space Green's function, respectively. Cou-

pled integral equations for the two components of the magnetic currents were then

obtained by enforcing continuity of the tangential fields across the cavity. These

were discretized using Galerkin's technique in conjunction with piecewise constant

and roof-top basis expansion functions. The resulting matrix system was solved by

LU decomposition.

The most challenging aspect of the implementation was the computation of the

slowly converging mode sums required for the evaluation of the interior admittance

elements. This is particularly so for the piecewise constant basis implementation

unlessthe cavityisnarrow in one direction.The roof-top basisimplementation pro-

vided a much more rapid convergence at the expense of complexity in the evaluation

of the external admittance elements. Nevertheless,as isusually the case with three-

dimensional moment method solutions,the presented solution demands excessive

CPU time when the aperture sizeisbeyond one square wavelength. Itis,therefore,

more applicable for smaller cavitiesand particularlythose which are narrow in one

direction.

Next, an alternativeapproach based on the GIBC was presented. In thiscase,the

structure isessentiallymodelled as an impedance insertand since thisformulation

is amenable to a CGFFT solution, larger cavity-backed apertures can be handled.

For the analysis of cavities filled with electrically dense materials, very good results

were obtained when employing the SIBC. A second order GIBC was also considered

which is believed to yield acceptable results for lower contrast material fillings.

An important contribution of this Chapter was the presentation of RCS patterns
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for various empty and filled rectangular cavities and to our knowledge these are the

first validated patterns to appear in the literature for this basic cavity shape.
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Part III

VECTOR-CONCURRENT

APPLICATIONS



CHAPTER VIII

OPTIMIZATION OF THE CGFFT

ALGORITHM

8.1 Introduction

Computational electromagnetics relies heavily on vector-oriented algorithms to

simulate complex problems. With the computer technology approaching the limits

of semiconductor speeds, the exploitation of parallel processing has emerged in order

to meet the processing demands of computationally intensive applications in electro-

magnetics. Most modern computing facilities now offer vector and parallel processing

capabilities. A vector facility exploits the independence of operations, particularly

those associated with the elements in an array or vector. In such machines, instruc-

tions are vectorized and distributed across different vector processors for concurrent

execution as opposed to the traditional approach where the computers are limited

to sequential processing of data on a single scalar processing unit.

The CGFFT lends itself to efficient execution in vectorized fashion. Most oper-

ations involve array manipulations which are vectorizable. Also, several of the steps

in the iteration algorithm can be treated independently and can thus be performed

on different processors. Most importantly, since the FFT is a highly vectorizable

algorithm, it plays a major role in the speed of the solution algorithm and overall

219
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efficiency of the optimized code. In this chapter, a vector-concurrent form of the

CGFFT method suitable for implementation on parallel multiprocessor systems is

applied to the problem of scattering from electrically large planar structures. To

demonstrate the speecl advantage which can be realized when executing the CGFFT

solution on a vector-concurrent facility, a few tests were performed on the supercom-

puters and mini-supercomputers.

8.2 Optimization

Before an assessment of the vectorizability of the CGFFT algorithm, a brief

review of some general concepts in vector and parallel processing will be presented.

This discussion is followed by an overview of the optimized CGFFT algorithm used

in this study.

8.2.1 Vectorization

The crux of parallel computing is the process of vectorization and distribution

of code among multiple processors. Typically, a vector instruction is capable of

operating on 32 to 128 elements of data at once, depending on the machine used,

resulting in two to four times gain in speed over the corresponding sequential scalar

instruction. Vectorization requires some degree of independence in the access of

data by the code. A dependence occurs when two statements---or iterations of the

same statement--refer to the same storage location. Some data dependences inhibit

vectorization; they are called recurrences. By changing the structure of the code, it

may be possible to eliminate a recurrence and vectorize the modified code.

A typical example of vectorization occurs when performing element by element

addition or product of two independent arrays/vectors. In a scalar machine, each
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elementproduct or addition will be done sequentially, whereas in a vector facility

vector registers are employed to perform several of the element operations concur-

rently. That is, when a DO loop is encountered, the loop iterations are not executed

sequentially but in parallel, provided there are no data dependences among the loop

iterations. When a parallel (concurrent) facility is also available, independent op-

erations or sections of the program may be executed on different processors. In

this manner, several matrix operations involving independent vectors/arrays may be

performed in parallel.

In order to measure the improvement in the speed of a vectorized code, several

parameters axe defined. The program speedup is defined as the increase in the speed

of execution when a code is run in vector mode relative to that in the scalar mode.

Therefore, referring to Figure 8.1, if a code runs for To seconds in scalar mode and

for T_ seconds in vector mode (i.e. after optimization), the corresponding program

speedup is given by

program speedup = Ts/T,_ (8.i)

Also, the vector content of a program is that percent of the scalar code which

vectorizes.Thus, iffor a given code, the scalarportion which may not be vectorized

runs in to seconds, and that which isvectorizableruns in t_ seconds in scalarmode

and in t_! seconds in vector mode I,we have

vector content = t,_/Ta x I00 (8.2)

and

vector speedup = t_/t_!

tt_! would be the time the code actually spends in the vector facilities.

(8.3)
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Figure 8.1: Scalar and vector execution times in a typical vectorized code.

Typically, programs with more than about 70% vector content run 1.5 to 2 times

faster in vector mode. However, as will be shown later, higher vector contents are

achievable for the case of CGFFT algorithm.

8.2.2 Concurrency

Although it is increasingly expensive to make a single processor faster, fairly fast

processors are inexpensive. Therefore using several relatively inexpensive processors

in parallel is often more efficient than using a single fast processor. A multiple

processor system can devote several processors to the execution of different parts

of a single program simultaneously. The compiler inserts protective synchronization

code into the optimized loops so that the multiple processors work together without

interfering with each other. Synchronization is needed to prevent conflicts in the

use of memory shared by parallel tasks and is considered the major cost of parallel

processing. Optimization is suppressed whenever the possibility of a data dependence

exists. Also, from Amdahl's law the increase in the speed of execution in concurrent
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modeas the number of processors is increased, approaches an upper limit set by the

presence of the sequential constructs in the algorithm.

In general, the concepts of data dependence in parallel processing are the same

as those in vector processing; the consequences of certain dependences, however, are

different.

A parameter of interest when processing in concurrent mode is the efficiency

of execution. Efficiency is a measure of parallelism in the algorithm. An efficient

parallel tasking system makes possible a nearly linear speedup in performance as

processors are added, if the algorithm is parallel. Thus, if T(") denotes the time

required to run on n processors, we may define

T(t)

concurrency speedup = T(---'T (8.4)

and

T(")

efficiency% = n-_ x 100 (8.5)

8.3 Optimized CGFFT Algorithm

Here, the vectorizable nature of the CGFFT algorithm is exploited by identifying

the major processes involved in a given iteration. From (2.1), it can be seen that

each iteration in (2.3) requires two convolution operations, two norm calculations

and three scalar products. A considerable amount of computation time is spent in

the calculation of the convolutions carried out in ,A[P.] and .A"[R..]. Each convo-

lution includes a pair of forward and inverse Fourier transform operations on the

relevant components of the current density vector along with a Hadamard (element

by dement) multiplication of the current and the dyadic Green's function in the

spectral domain. Since for a given current component there is no data recurrence



224

at a particular point in an iteration, these operations may be vectorized to increase

the speed of calculations. The same observation is true for the computation of the

norms and the dot products used to update the current $, the residual vector R,

and the search vector P. More importantly, since the FFT is a highly vectorizable

algorithm, it plays a major role in the speed and efficiency of the optimized code.

The processing was carried out on two vector machines available at the time of

this study, namely, the Alliant FX/8 multiprocessor and the IBM 3090/600E super-

computer. Some general guidelines for code optimization are given in Appendix E

and have been followed in optimizing the CGFFT algorithm in the present study.

It should be noted that the data reported here on the actual performance of the

algorithm on a given mode of execution will be of little value, as current and future

advancements in computer technology renders them obsolete; however, it is the rel-

ative performance improvement which is of interest when the algorithm is executed

in the optimized mode as compared with the sequential mode.

To assess the efficiency of the optimized code, the rectangular plate problem

discussed in Chapter 4 was examined in some detaiL Tables 8.1 and 8.2 show the

performance of the optimized CGFFT algorithm executed on the Alliant and IBM

vector facilities for computing the currents on a 2A x 2A conducting plate. The

plate was assumed to be illuminated at normal incidence by an E-polarization plane

wave and 63 x 63 unknowns and 128 x 128 FFT pad (order 1) were employed. The

percent vectorizable code of 97_ indicates a highly optimized algorithm resulting

in a program speedup of more than four times. It is clear from the tables that the

vectorized FFT is mainly responsible and contributes to the speedup in the execution

time. The performance point of the IBM supercomputer for this particular case

is given in Figure 8.2 indicating the remarkably high efficiency of the optimized
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algorithm.

In the case of the Alliant, the overall speedup was more than 600 percent per

iteration. The speedup in execution time is even more impressive when all four

processors of the Alliant are utilized. As seen from Table (8.4), a speedup of 3.5 was

achieved when using four concurrent processors at an efficiency of 88%. This implies

a speedup of more than 20 times per iteration when combined with the data in Table

(8.2). Again, the improvements in the performance of the algorithm is attributed

to the vectorized FFT which is the most significant factor in the solution process.

This is illustrated in Figure 8.3 where the distribution of the CPU time among the

computationally intensive routines in the scalar and vector modes are shown.

In order to further evaluate the efficiency of the method when the size of the

problem grows, the cases of 5A x 5A and 10A x 10A plates were also considered with

the corresponding results reported in Tables 8.4 and 8.5. The sampling density in

these cases were 625 unknowns/A 2 with a FFT pad of order one. Interestingly, similar

speedups are observed for larger plates indicating that the aforementioned results

are independent of the cache memory. Figures 8.4 and 8.5 show the components

of the surface current densities excited on the conducting plates and calculated by

the CGFFT method in the vector-concurrent mode. It should be noted that the

calculation of the surface currents associated with the conducting plate in Figure 8.5

required 125,000 unknowns. This large number of unknowns presents a challenge

for direct matrix inversion approaches because of their large storage requirement. In

contrast, the CGFFT solution could be performed on a relatively small computer.

Finally, the backscattering behavior of an equilateral triangular conducting plate

of side length 5A at near grazing (conical cut at 00 = 0 = 80*) is shown in Figure

8.6. Due to the symmetry of the problem, the full-range data was replicated from
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that calculatedin the range 0 _< _b< 60a.

8.4 Summary

It was shown that the conjugate graxtient FFT algorithm is suitable for vector-

concurrent optimization and may be efficiently implemented on multi-processor com-

puters. The FFT plays a crucial role in the speedup and the efficiency of such an

application. As the size of the problem becomes larger, there is a corresponding

degradation in the performance of the optimized code due to the complexity of the

memory cache references. This complexity, however, has not proven restrictive in

the examples considered because the CGFFT method does not suffer from the sa_me

memory requirements as the direct methods do. Thus, relatively large problems can

be handled without considerablelossof efficiencyand speed.

Although thisstudy was concerned with automatic parallelization,which islim-

ited to optimization of individualloops, parallelismat a largergranularity can be

specifiedby the programmer to achieve a superior performance for more complex

problems. An example of such an applicationisthe problem of scatteringby a di-

electricplate of finitethicknesswhere the normal component of the current density

istotallyindependent of the planar components and can be solved forby a dedicated

processor in parallelwith them.
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CGFFT Code

Performance

ELAPSED CPU, sec

VECTOR CPU, sec

VECTORIZABLE CODE, sec

VECTOR CONTENT

VECTOR SPEEDUP

PROGRAM SPEEDUP

Scalar

(scalar FFT)

148

Execution Mode

Vector

(scalarFFT)

129

9

28

18.9%

3.1

1.15

Vector

(vector FFT)

34

30

144

97.3%

4.8

4.35

Table 8.1: Performance of the scalar and vectorized code on the IBM 3090.

CGFFT Code Execution Mode

Performance Scalar Vector Vector

(scalar FFT) (scalar FFT) (vector FFT)

INITIALIZATION, sec

CGFFT LOOP, sec

TOTAL CPU TIME, sec

ITERATIONS

PER ITERATION, sec

MEGAFLOPS

PROGRAM SPEEDUP

SPEEDUP/ITERATION

2.39

4307.0

4309.3

111

38.80

0.0527

0.72

1255.2

1255.9

111

11.31

0.1807

3.43

3.43

0.80

342.8

343.6

59

5.8

0.3512

12.54

6.69

Table 8.2: Performance of the scalar and vectorized code on the AUiant FX/8.
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Optimized CGFFT NO. of processors

Performance 1 2 3 4

INITIALIZATION, sec

CGFFT LOOP, sec

TOTAL CPU TIME, sec

ITERATIONS

PER ITERATION, sec

MEGAFLOPS

SPEEDUP

EFFICIENCY

1.60

407.4

409.0

59

6.91

0.2951

0.86

211.0

211.8

59

3.58

0.5697

1.93

96.5%

0.61

146.7

147.3

59

2.49

0.8192

2.78

92.7%

0.50

115.6

116.1

59

1.96

1.0340

3.52

88.0%

Table 8.3:Vector-Concurrent performance for a 2A x 2A plate.
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Figure 8.2: Performance of the optimized CGFFT algorithm on the IBM 3090.
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Figure 8.3: Distribution of the CPU time among the computationally intensive rou-
tines.
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Optimized CGFFT NO. of processors

Performance 1 2 3 4

INITIALIZATION, sec

CGFFT LOOP, sec

TOTAL CPU TIME, sec

ITERATIONS

PER ITERATION, sec

MEGAFLOPS

SPEEDUP

EFFICIENCY

6.35

1096.6

1103.0

46

23.98

0.3848

3.26

568.9

572.2

46

12.44

0.7417

1.93

96.5%

2.32

398.4

400.7

46

8.71

1.0590

2.75

91.7%

1.90

319.0

320.9

46

6.98

1.3226

3.43

85.8%

Table 8.4: Vector-Concurrent performance for a 5A x 5A plate.

Optimized NO. of processors

Performance 1 2 3 4

INITIALIZATION, sec

CGFFT LOOP, sec

TOTAL CPU TIME, sec

ITERATIONS

PER ITERATION, sec

24.55

3673.3

3697.8

38

97.31

13.60

1973.0

1986.6

38

52.28
i

9.10

1349.8

1358.9

38

35.76

MEGAFLOPS

SPEEDUP

EFFICIENCY

0.4223 0.7861

1.86

93.0%

1.1492

2.72

90.7%

7.23

1080.5

1087.7

38

28.62

1.4357

3.40

85.0%

Table 8.5: Vector-Concurrent performance for a 10A x 10A plate.
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(a)

Figure 8.4: E-polarization plane wave scattering from a 5A x 5A conducting plate at

normal incidence (125 x 125 unknowns and FFT pad of order _ = 1).

(a) Co-polarized component of the current density. (b) Cross-polarized
component of the current density.
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(b)
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(a)

Figure 8.5: E-polarization plane wave scattering from a 10A x 10A conducting plate

at normal incidence (250 x 250 unknowns and FFT pad of order _ = 1).

(a) Co-polarized component of the current density. (b) Cross-polarized
component of the current density.
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(b)
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Scattering from a 5A Equilateral Triangular Plate

Oo

°o

o,O* °o°

Figure 8.6: Conical backscattering cross section of an equilateral triangular conduct-

ing plate of side 5A at 0 = 80°; 625 unknowns/AS; Maximum number of

iterations: 250; Average tolerance: 0.015 (E-Pol.) and 0.025 (H-Pol.).



CHAPTER IX

Conclusions

The theoretical and computational aspects related to the application of the con-

jugate gradient FFT method in computational electromagnetics have been examined.

The first Part of the thesis was devoted to the problems of electromagnetic radi-

ation and scattering from linear, cylindrical, and planar structures. Both perfectly

conducting and imperfect bodies were treated. A number of highly efficient and

accurate numerical codes have been developed for the solution of these problems.

These programs cover a broad range of operations in terms of frequency, material

composition, and structural geometry and may be used for both analysis and design

purposes.

The provisions of incorporating various expansion functions into the CGFFT

method was discussed in Chapter 2. It was found that by employing subdomain

basis functions, the convergence rate of the CGFFT method can be improved drasti-

cally. In particular, a quantitative measure of convergence improvement was estab-

lished for a class of such basis functions. Illustrative examples of CGFFT applica-

tions to two- and three-dimensional problems were presented in Chapters 3 and 4,

respectively. Two different but related approaches in computing the integrodiffer-

ential convolutions were presented. The first approach (CGFT) was based on era-

238
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ploying the sampled continuous transform of the Green's function,while the other

(CGDFT) employed finiteduration discreteFourier transforms. The lattermethod

was found to provide a more ei_icient(and more accurate) simulation,particularly

forE-polarizationcases.

Other vaxiationsin formulating the CGFFT method have appeared in the liter-

ature recently. These approaches differprimarily in the chosen (or implied) basis

functions for the unknown current density,and the method of computing the inte-

grodifferentialoperator in the spectral domain. Some examples of these variations

have already been discussed in this thesis. In aclditionto these approaches, some

authors have proposed other methods of formulating the integralequations. In par-

ticular,it has been shown that by introducing the surface charge density in the

integralformulation and expanding the vector potentialinstead of the current den-

sity,smoother and more stablesolutionsmay be achieved [91].

Incorporation of the impedance boundary conditions into CGFFT was consid-

ered in Chapter 5. Advantages include the elimination of a need to sample within

the volume, furtherreducing the memory demand and also avoiding the diIiiculties

associated with the calculationof the Green's function. Application of the gener-

alizedimpedance boundary conditionsin modelling the two- and three-dimensional

impedance insertswas shown to be compatible with the basic CGFFT formulation,

thus allowing an efllcientsimulation of coated structures and filledcavity-backed

apertures.

The problems of scatteringfrom two- and three-dimensional rectangular grooves

and cavitieswere studied in Part Two of the thesis.After presenting a general full-

wave analysis,approximate solutionsbased on the impedance boundary conditions

were considered. GIBCs of up to order 3 were employed. The formulations based
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on these boundary conditions were amenable to a CGFFT solution and were found

easier to implement than the full-wave formulation. The predicted currents based

on the GIBC simulations are in general incorrect near the edges. However, for high-

contrast material fillings, the SIBC was found adequate in modeling the groove.

Further research is needed to study the applicability of the higher order conditions

to terminated cavity and coated structures, and to establish the ranges of validity for

such applications. For the two-dimensional case, a hybrid exact-GIBC approach was

proposed which provided a good prediction of the scattering behavior of rectangular

grooves without compromising the advantages offered by CGFFT. In contrast, when

the impedance variations of the insert are sufficiently slow, a direct application of

the impedance boundary condition is sufficient.

A vector-concurrent implementation of the CGFFT method was presented in Part

Three. It was shown that the CGFFT algorithm is highly vectorizable and may be

ei_ciently implemented on supercomputers and multiprocessor machines. Vectoriza-

tion and parallelization of the underlying algorithms will be of great importance in

reducing the computation time and improving the efficiency of the CGFFT solution

method.

Beyond the basic applications considered in this study, the extension to three-

dimensional structures with and without anisotropy is straightforward by employing

the three-dimensional FFT. Also, the CGFFT method is directly applicable in solving

systems relating to scattering, transmission and radiation by periodic structures and

arrays. In that case, the resulting system is discrete and no need arises for corrective

measures due to discretization.

New emerging methodologies which combine the CGFFT with other numerical

techniques are of potential importance in future research. In addition to the hy-
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brid exact-GIBC solution discussed in Chapter 6, the Finite Element and CGFFT

methods can be combined to reduce the dimensionality of the required FFT and

consequently improve the efficiency of the solution process [92].

The numerical results presented in this thesis will serve two purposes. First, they

can be used as reference for future developments in this area. Second, future work

may use the various programs developed in this study to investigate the behavior

of different scatterers in an attempt to develop simple mathematical and physical

models. Since the main advantage of the CGFFT method in comparison with matrix

inversion techniques is its reduced memory demand, it is particularly useful in large

scale electromagnetic simulations.
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APPENDIX A

THE METHOD OF MOMENTS

Traditionally, equation (1.1) is solved directly by the Method of Moments(MoM) [20,

93]. The method of moments is a projective method in which a functional equation

in an infinite dimensional function space is approximated by a matrix equation in a

finite dimensional subspace.

Consider the linear operator equation

A[I] = g (A.1)

where A is the linear operator, g is a known function, and f is an unknown function

to be determined. In the method of moments the unknown function f is represented

approximately by a linear combination of a finite set of functions fn in the domain

of A

N

 cnA

where ca are scalars to be determined.

A E T_A (A.2)

The functions f_ are known as basis or

expansion functions.Substituting (A.2) into (A.I) gives

N

__, c,,A[fn] "" g (A.3)
nml

where the linearity of the operator has been employed. Defining the residual error R

N

R = g- _ _A[f,,] (A.4)
n_-- 1
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the coefficients c_ are computed so that the residual error is orthogonalized, with

respect to an inner product, to a sequence of weighting functions w_ defined in the

range of A

< w,,,, R >= 0 m = 1,.-., N w,,, E RA (A.5)

The above inner products are called the weighted residuals. This represents a system

of linear equations

N

< w,.,,A[f,,] >=< w ,g > m = 1,...,N (A.6)

which can also be put in the matrix form

[A_,_][c_] = [g_,] (A.7)

where [A,_,,] is the matrix of dements

A_, =< w,,,,A[fi,] > (A.8)

and [g_] is the column vector

gm =< w_,g > (A.9)

If [A,_, l is nonsingular, its inverse exists, and [c_ l is given by

(A.IO)

The solution f is then obtained from (A.2)

f- (A.11)

where [f,,]t is the row vector of basis functions.

Two classical approaches have found utility in choosing the weighting functions

w,,. These are referred to as the Galerkin's method and the point matching method.
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Galerkin's method may be considered as the speciahzation of moment method to

the case of self-adjoint operators. The adjoint operator A _ is defined with respect to

the inner product as

< w,A[f] >=< A*[w],f > f e DA w • :D_ (A.12)

and if the domains of A and A _ are the same, we can choose w,_ = f,. For self-adjoint

operators (A = A*), this choice of weighting functions makes [A,,_,_] a symmetric

matrix which may be desirable from a numerical standpoint.

A.2 Point Matching

If the weighting functions are formally chosen to be Dirac delta functions, equa-

tion (A.3) is satisfied at discrete points in the region of interest. This is the simplest

specialization of the moment method. The major advantage of this method is that

the integrations represented by the inner products (A.8) and (A.9) now become triv-

ial since they are evaluated at discrete points.
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APPENDIX B

THE FREE SPACE GREEN'S FUNCTION

AND ITS TRANSFORM

Consider the complex vector wave equation (Helmholtz equation) satisfied by the

electric field in a homogeneous isotropic medium

V x V x E- k2E = -jwpJ (B.1)

The field may be expressed in terms of the Hertz vector potential of electric type

II(r) = _j__ZZkI/Iv J(r')G(r; r')dv' (B.2)

where G is the scalar free space Green's function satisfying the scalar wave equation

V2G(r) ÷ k2G(r) = -_(r) (B.3)

The Green's function can be regarded as the response due to a point source and it

is of interest to find the Green's function and its Fourier transform corresponding to

a line source (two dimensional case) and a point source (three dimensional case).

B.1 Line Source

For a two dimensional problem (0G = 0), the Helmholtz equation reads
Oz

(m as
Ox _ + -._ + k_)G(x,y) = -6(x)6(y) (B.4)
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Due to the axial symmetry of the problem, the wave equation can be written in

cylindrical coordinates as

lO
( Op + p-_p + k_)G(P) = -,5(p) (B.5)

where _(p) = 8(x)6(y ). Outside the source region, the right hand side is zero and

(B.5) is the Bessel equation of the zeroth order. Therefore, in view of the time

convention e j'_t, a solution of (B.5) representing an outgoing wave that satisfies the

radiation condition is the Hankel function of the second kind [96]"

c(p) = _Ho(=)(kp)

The asymptotic expansion of the Hankel function is given by [44]

, 2f_-e-JkP kp .-, oo
_?_(kp)~ V'ig. '

and G shows the proper behavior in the far field.

In order to find the Fourier transform G, we write

G(_,_) = (2,02 oo ooG(k"k')_J_'=+_'_ak_ak_

°._(z,y) = (2.) 2 .o ooe'(_"_+"'")ak_dk"

and substitute these in (B.4) to obtain for all x and y we have

'//F-- (2.) 2 oo oo ¢i(kfr+k'V)dk=_dky' Vx, y

Consequently, we may formally write

1

(_(k.,k,,)= k2_ _:==_ _:_

(B.6)

(B.7)

(B.8)

(B.9)

(B._0)

(B.11)
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and equivalently,

1__oo F 1 _(k.=+k,_)dk=dky (B.12)G(,,_) = (2_)_ . k_- k_- k_

However, this integral is undefined for real values of k, because the poles

k_ = +_/k 2 - kS (B.13)

are located in the path of integration on the real kv-axis (Figure B.1). This difficulty

can be alleviated by introducing a small loss in the medium so that k = k' - jk",

and the poles are given by

kv = T(k'p- jk;) (B.14)

The singularities are now located off the real axis and the inverse transform (B.12)

is defined. Furthermore, in accordance with the radiation condition, we demand the

following functional form for the transform

_+(kx,y) = ¢+(k,)ei**+', y > o (B._5)

G-(k_,y) = ¢-(k,)e -/k;'v, y < 0 (B.16)

where k_ are such that

{ _elk:}< 0_m(_:)> o
{ _e(k;} > oand (B.17)

_m{k;) <0

The kv integral may now be carried out by contour integration in the upper and

lower half planes corresponding to y > 0 and y < 0, respectively.

Lemma and Cauchy's theorem, we obtain

Using Jordan's

G(z,y) = -"_rj eik*'dk"' Y > 0 (B.18)

1 _o eit,[Vejl,,,Xdk_ ' y < 0 (B.19)
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+

X Y

-k

÷k
Y Re{ky}

Figure B.I: Path of integration for the Fourier transform integral.

where k_ are given by (B.13):

(13.20)

Therefore, by uniqueness of the solution to partial differential equations satisfying

the required boundary conditions, the final result holding for all values of y is given

by

1 e-yNI''IH(2)( kP) = _ f-_ sgn (y)ky ejk''dk=' Vy (B.21)

where sgn is the signum function and k v satisfies the second of conditions (B.17).

The above equation was derived for a lossy medium (k complex) but it remains

valid for the lossless case (k real) provided the path of integration is stipulated to

avoid the singularities [94]. In this case k_ should satisfy

= [ _-k; k > k.
k_ (B.22)

[ -jJk_- k_ k < k.
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In the limit as IYl _ 0, we have

1

a_2)(klxl) _ 2jk-"-_ { _e{k_} > 0
9m{k_} < 0

and when k is real, the Fourier transform pair is given by

1

__,(klxl ) _ 2j_ k > k=
1

2 "---'-_/k_-k2 k < k=

(B.23)

(B.24)

B.2 Point Source

In the three dimensional case, the Helmholtz equation takes the form

02 02 02
(_ + _ + _ + k2)a(=,y,z) = -6(=)_(y)6(z)

Solving this equation in the spherical coordinates, gives

e-jkr

G(r)= 4rr

(B.25)

(B.26)

Following an analysis similar to the two dimensional case, the inverse Fourier trans-

form integral is introduced as

a(=,_,:)

6(=,_,z)

1 oo oo

(B.27)

1

= (2_r)3_ff_j(:eJ("=+k.'+k'*)dk=dk, dk, (B.28)

which upon substitution in (B.25) yields the formal expression for G

a(z,y,z) = 'FF// ' eJ(k,z+k,_+k,*) dkzdk_dk z

(B.29)
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The presenceof the poles

(B.30)

in the path of integration on the real kz-axis renders the above integral undefined.

Again, introducing a small loss in the medium and following the procedure outlined

in the previous section, the k, integration may be carried out in the complex plane.

Thus, contour integration in the upper and lower half planes corresponding to z > 0

and z < 0, respectively yields

¢o ,Jk,+z

J F /- _'_"@(h"+"V'dkxdk" z > 0 (B.31)a(z,y,_)- 8_2 ¢¢ oo k,

j //f,,,,jkr,G(x, y, z) = _ oo _oY_-_ e:{k'*+h'*)dk*dky' z < 0 (B.32)

where k[" are given by

(B.33)

and they satisfy conditions similar to (B.17). Combining the two equations, we

obtain for all z

e -jkr 1 1 '_ = e -ik'l*l/_/_4,.- 2j (2,_)_ _ _ s_ (_)k.
ei{k*_+k_'Y) dk_dkz,, Vz (B.34)

where

{ _e{k_} > o
_m{k,} < 0

(B.35)

When k_ is real (lossless case), the path of integration is deformed to exclude the

real poles and (B.34) remains valid provided

¢

[
(B.36)
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In the limit as Izl --, O, we have

4rx/x 2 + y2 2jkz

and when k is real the Fourier transform pair is given by

{ 11
(B.37)

(B.38)
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APPENDIX C

MATHEMATICAL PROOFS

C.1 Proof of the Transformation (5.10)

Consider the generalized impedance boundary condition (5.1) applied to the nor-

mal field component U at the top surface (y = t) of the layer under study

M a. 0"U I =0 (C.1)(-jko)" oy,,, ,=,
¢nmO

where a,_ and a_ are the GIBC constants specific to the material properties of the

layer. It is desired to replace this condition by an analogous one, applicable at the

reference plane (y --- 0) as

M A_, "_-_1 =0 (C.2)(-jko)- _=o
¢n-_-0

This may be the case when one is interested in applying the image theory for a

coating of thickness t on a ground plane.

In order to find the relation between the two sets of coefficients AT, and a,,,, we

expand U at y = t and its normal derivatives there in terms of the corresponding

quantities at y = 0. Hence, by invoking Maclaurin series expansion of U, we have

u(t) = F_, u(o)
nmO

-F._.
nmO



254

where we have retained only derivatives of at most M-th order as the original condi-

tion does not include higher order derivatives. Similarly, we have for the first normal

derivative

o_ .=, (L-])!g_': u(°)+°(:"°_+')

and generalizing this to higher orders

_ =.=,\(r,- p)!_" U(O)+ O(t'+_-"'OM+')

Substituting the above expansion back into (C.1), we obtain

= (__-o)_ _- _(_-_)_ _. u(0) = 0

which after a simple re-arrangement of terms reduces to

M 1 " (--jk,,t)" o"g(o)

(-jko),_ _-. ,_ "'_-" = om=0 n=0 OY m

The above result is in the desired form (C.2) and by inspection, we find

A,,, = _ a,,,_, , rn = 0,..., M
n_O

(C.4)

(c.5)

(c.6)

(c.T)

(c.8)

C.2 Proof of the Identity (5.52)

We would like to show that

lira OG(z, y, z; z',y', z')
:--*0 OZ L'=O

is a Dirac Delta function. Consider the identity (Appendix B)

eJk.R

41rR - 2 (27r) 2 f-'o_ eil'f=eJk"ve'il'*=dk_dku (c.9)

R=_z_+y_+z: (C.lO)
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implying the Fourier transform relation

e-/koR j d k'z

4rR 2 k,
(C.11)

where

{ j Ck_ + k_ - k_o , ko < _ + k_

kz = (c.12)

_/ko_- k; k_ , ko> _ + k_

Differentiating with respect to z, wein accordance with the radiation condition.

have

_Z 1 _kzG(/c_:,k_)= --e _' (C.13)
2

whose limit as the sheet is approached is

1_mo- eJk,_=__ (C.14)

Upon inverse transformation of the last equation, the desired result is obtained as

OG(x,y, z) 1
lira _- --_6(x,y) (C.15)z-*O (_Z
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APPENDIX D

OPTIMIZATION TECHNIQUES

Once a well written code is compiled, most vector and parallel constructs are rec-

ognized by the compiler and automatically optimized for efficient execution. This is

achieved through loop level concurrency and vectorization of the sequential code. A

typical compiler's optimization strategy may be summarized as follows:

For each innermost loop :

• If veetorizable then

o If next outer loop is parallelizable then

* Concurrent-Outer Vector-Inner

o Else

* Vector-Concurrent

o Endif

• Elseif parallelizable then

* Scalar-Concurrent

• Else

• Endif

* Not Optimized
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The fastest vector-concurrent mode of execution is achieved when all the available

processors are utilized to attack a single task concurrently with vector operations

performed on strides of data on each processor. The resulting high-performance, low-

level parallelism can significantly boost the performance of computationally intensive

operations such as Fourier transformations.

In this study the scalar and optimized FFT routines available on the IBM 3090's

ESSL library and the Alliant's Fortran math library were used in both scalar and vec-

tor modes. These FFT routines are written in conjunction with assembler language

and generate instructions appropriate for the architecture of the processors-they

manage data to make efficient uses of the memory hierarchy.

In addition to automatic optimization, however, most vector compilers provide

directives for additional control. Compiler directives are user supplied control struc-

tures to override decisions made by the compiler and to give additional information

to it. Upon compilation, the directives are interpreted by the processor and con-

verted to library calls to be executed in a more efficient manner. In particular, the

associative transformation directive recognizes operations like dot products and norm

computations as reduction functions and optimizes these otherwise non-vectorizable

loops.

Some general guidelines for code optimization in various architectural levels are

given in Table D.1.
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ARCHITECTURAL

TECHNIQUES

PROGRAMMER ACTIONS*

SCALAR PIPELINING Use compiler switches (global optimization).

VECTOR PROCESSING

CONCURRENCY

CACHE/MEMORY

ACCESS

1. Restructure loops and use compiler directives.

2. Maximize vector lengths by renesting, merging,

unrolling loops; largest iterates to be inside.

3. Ehminate conditionals in loops & distribute them.

4. "Supervector" loops to fill vector registers.

5. Move I/O statements out of the loops.

6. Turn off vectorization for short loops,or some

vectorized loops with conditionals, dependences.

1. Eliminate/relocate dependences, scalar

carry-arounds.

2. Restructure for Concurrent-Outer Vector-Inner.

3. Create concurrently-caUable subroutines.

4. Renest/merge loops for more concurrent iterations.

1. Possible problems with strides.

2. Leftmost array dimension should be the largest.

4. Outer loop corresponds to the leftmost array index.

3. Process compact vectors, columns instead of rows.

4. Localize memory references.

*Extracted from IBM 3090 and Alliant FX/8 programrpJng manuals

Table D.I: Optimization techniques.
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